
webhostinghero.org

How to Create a Self Signed
Certificate on a Linux Server
Posted on Updated on May 17, 2018

Earlier, we’d looked at how to install Apache on a clean Linux
install directly from the command line and have it start up on
boot. While this works great for normal requests, it doesn’t
process SSL requests. Meaning that if someone types in “https”
instead of “http”, you’ll get an error that looks like this:

HTTPS is more important than ever, and it will continue to grow
in usage until virtually the entire web is encrypted. Google is
pushing hard for HTTPS and has promised to provide
preferential rankings for secure sites as opposed to insecure
ones. Regardless of how you may might feel about this
(personally I think Google needs to back off – some sites have
no use for HTTPS), it’s important to keep up with changing
trends and transition your site to SSL. In this tutorial, we’ll look at
how to configure your site to accept HTTPS requests via self
signed certificates.

Keep in mind, that this is for demo purposes only. In reality,
you’ll need to send your Certificate Signing Request (csr) file to
a registered CA so they can verify your site independently. But
you can also self sign your requests – meaning that most
browsers will display a huge security warning to your users.
This can be bypassed if needed, but if you have a production
site, keep in mind that you’ll have to eventually send your
certificate for authentication (for a fee).

Step 1: Making sure the Right Software is
Installed
I was going to write this article using the “genkey” utility via the
“crypto-utils” package, but realized that it doesn’t work over
Putty using Windows as a client. The reason is that it needs to
generate random data for creating the key, and it requires
mouse or keyboard input over the server console.
Unfortunately, this doesn’t work over a remote connection via
SSH – you have to be directly connected to the server. So
despite it having a nice and easy to use GUI, I can’t
recommend the genkey tool to generate a certificate for your
server.

So instead, we’re just going to go with “openssl”. Chances are
that it’s already installed on your server, but there’s no harm in
verifying that you have the latest update files. If you’re using
CentOS, then type in :

yum install openssl

With Ubuntu, you’ll need to use “apt-get” instead of “yum”.
Modify this for your own version of Linux. If openssl is already
installed, you’ll get something like the screenshot below. If not,
it’ll be installed:

Step 2: Create the Key and Certificate
Directory
We’ll need a defined location to place our key and certificate
files. Well…actually we don’t, but it’s nice to know where they
are in case you have to find them later. Technically you can
just keep everything in your root directory, but that’s not
organized. Since these are dependent on apache, we’ll create
a directory called “keycertificate” in the apache installation
folder. Run the following command:

How to Create a Self Signed Certificate on a Linux Server... https://webhostinghero.org/how-to-create-a-self-signed-ce...

1 of 4 2/8/22, 14:21



mkdir /etc/httpd/keycertificate

Now that we have a place to put our key and certificate, we
can finally generate the certificate!

Step 3: Determine your Organization
Name or IP Address
When you create your certificate, you’ll be asked to provide
several details – one of the most important is your domain
name or IP address. If you want to submit a certificate request
to a CA, then you need to make sure that you provide the main
domain name of your site – not an alias for example. For our
purposes, you can even use the IP address of your server. As
long as you remain consistent with it – because you’ll have to
enter it in a couple of places.

For this example, I’m using my server IP address.

Step 4: Determining the Level of
Encryption
When you generate your private key, you have to determine
what level of encryption you want to use. The recommended
key length is 2048 bits. Higher security keys like 4096 bits have
a slower server response. Technically, you can even use
something as low as 512 bits for maximum speed, but
browsers these days will display a warning if the certificate is
linked to a low security key.

Chrome for example, will reject the request outright without
any additional information. Firefox however, displays the
following warning:

For testing purposes, I wanted to first use a weak key to see
what would happen, and it took me a while to figure out the
problem! So if you want modern browsers to recognize your
site, make sure you use a key with at least 2048 bit security.
Anything less will set off errors.

Step 5: Generating the Key and
Certificate
Now we come down to it. We’re going to perform the following
tasks:

1. Generate a key pair
2. Extract the private key
3. Delete the initial key pair
4. Create a certificate signing request
5. Create a self signed certificate

These four steps are carried out by the following four
commands:

openssl genrsa -des3 -passout pass:x -out server.pass.key 2048

openssl rsa -passin pass:x -in server.pass.key -out /etc/httpd/k

rm server.pass.key

openssl req -new -key /etc/httpd/keycertificate/

openssl x509 -req -days 365 -in /etc/httpd/keycertificate/

In the above example, replace [server name/IP] with the name
you decided on in step 3.  The fourth command will ask you a
bunch of questions about your organization. Since this is a self
signed certificate, you can leave most of the fields blank.
However, when it asks you for your “common name”, make
sure you enter your server’s domain/IP address as determined
before:

The final command will use the CSR to create a self signed
certificate and place it in the “keycertificate” folder that we
created in Step 2.

How to Create a Self Signed Certificate on a Linux Server... https://webhostinghero.org/how-to-create-a-self-signed-ce...

2 of 4 2/8/22, 14:21



Step 6: Configure Apache to use the
Certificate and Key
So we have our key and certificate. But by itself this means
nothing. Apache still doesn’t know that we have these files. So
now we have to modify the Apache configuration to tell us
where the files are located. Open the following Apache
configuration file like this:

vi /etc/httpd/conf.d/ssl.conf

Or you can use your favorite text editor instead of “vi”. Either
way, search for these two lines starting with:

SSLCertificateFile

and

SSLCertificateKeyFile

And plug in the paths to the key file and certificate like this:

SSLCertificateFile /etc/httpd/keycertificate/[server name/IP]

and

SSLCertificateKeyFile /etc/httpd/keycertificate/

Make sure you use the same domain name or IP address you
determined in Step 3. Here’s a screenshot to show you what it
looks like:

Save the changes to the SSL config file.

Step 7: Restart Apache
The final step is to restart Apache to make our changes
permanent. To do this, type in the following:

apachectl restart

After it’s completed, you’re all done! Now open up a browser
and visit your site using “https” instead of “http”. At the
beginning of the tutorial, we saw how it generated an error.
This time, you should see something like this:

Chrome recognizes that it’s a self signed certificate and
generates a warning. If you click “Advanced”, you’ll be allowed
to ignore the error and proceed, and your page should show
as usual:

How to Create a Self Signed Certificate on a Linux Server... https://webhostinghero.org/how-to-create-a-self-signed-ce...

3 of 4 2/8/22, 14:21



Step 8: Submit your CSR File to a CA
We generated a .csr file where we had to enter all our details,
e-mail ID etc. That file can be sent to a Certificate Authority
(CA) in order to obtain an authorized certificate that we can
place onto our server so that browsers don’t display a warning
like they do above. CAs charge a fee depending on how
rigorous their security checks are. So this is something that you
will want to look in to once you’re ready so that everyone can
access your site over HTTPS without warnings.

Post navigation
Previous Previous post: How to Set up an FTP Server on CentOS
Linux 7.x
Next Next post: How to Enable FTP SSL/TLS Security on Linux via
the Command Line

Leave a Reply
Your email address will not be published. Required fields are
marked *

Comment

Name*

Email*

Website

Post Comment

Topics
Articles
Email Hosting
Linux
PHP
Productivity
Web Hosting
WordPress

About this archive
The content from this archive is provided for reference
purposes only and will no longer be updated.

How to Create a Self Signed Certificate on a Linux Server... https://webhostinghero.org/how-to-create-a-self-signed-ce...

4 of 4 2/8/22, 14:21


