# **Hacking Articles**

## Raj Chandel's Blog

Menu

A Home » Nmap » Forensic Investigation of Nmap Scan using Wireshark

Nmap

## Forensic Investigation of Nmap Scan using Wireshark

January 17, 2018 By Raj Chandel

Today we are discussing how to read hexadecimal bytes from an IP Packet that helps a network admin to identify various types of NMAP scanning. But before moving ahead please read our previous both articles "**Network packet forensic**" and "**NMAP scanning with Wireshark**" it will help you in a better understanding of this article.

Requirement

Attacking Tool: Nmap

Analysis Tool: Wireshark

We are going to calculate hexadecimal bytes of Wireshark using given below table and as we know Wireshark capture network packet mainly of 4 layers which are described below in table as per OSI layer model and TCP/IP layer model.

\*

| Layer Captured by Wireshark | TCP/IP layer as per Wireshark | OSI layer as per Wireshark |
|-----------------------------|-------------------------------|----------------------------|
| Ethernet Header             | L1 Network Interface Layer    | L2 Data Link Layer         |
| IP Header                   | L2 Internet Layer             | L3 Network Layer           |
| TCP/UDP Header              | L3 Transport Layer            | L4 Transport layer         |
| Application Header          | L4 Application Layer          | L7 Applcation Layer        |

## **Nmap ARP Scanning**

#### Let 's start!!

Hopefully, the reader must be aware of basic NMAP scanning techniques if not then read it from here, now open the terminal and execute given below command which known as "HOST SCAN" to identify a live host in the network.

nmap -sn 192.168.1.100

Nmap uses the –sP/-sn flag for host scans and broadcasts ARP request packet to identify which IP is allocated to the particular host machine. From given below image you can observe that "1 host up" message.

Working of ARP Scan for Live Host

- 1. Send ARP request for MAC address
- 2. Receive MAC address through ARP Reply packet



#### Step to Identify Nmap ARP Scan

#### • Collect Ethernet Header details

Here we used Wireshark to capture the network packet coming from victim's network

order to analysis only ARP packet we have applied filter "ip.addr == VICTIM IP || arp" as shown in given below image. Here you will find 2 arp packets, basically, the 1st arp packet is broadcasting IP for asking MAC address of that network and the 2nd packet is unicast contains Answer of IP query.

Now let's read Hex value of Ethernet header for identifying source and destination Mac addresses along with that we can also enumerate the bytes used for an encapsulated packet, in order to identify Ether type is being used here.

| Ethernet header<br>14 bytes | Destination MAC Address<br>6 Bytes | Source MAC Address<br>6 Bytes | Ether Type<br>2 Bytes |
|-----------------------------|------------------------------------|-------------------------------|-----------------------|
| Bits Color                  | Brown                              | Pink                          | Yellow                |
| Hexadecimal value           | ff:ff:ff:ff:ff:ff:ff               | 00:0c:29:d1:8e:0c             | 0806                  |

Hence from Ethernet header, we can conclude it as ARP broadcast packet asking for destination Mac address. There shouldn't be any uncertainty in concern with source Mac address who is responsible for sending packet but if we talk about Destination Mac address then we got ff:ff:ff:ff:ff:ff:ff:ff which means exact Destination is the machine is not available here. Further moving ahead we found **Ether type 0x0806** highlighted in yellow colour is used for ARP protocol.

| i | o.addr == 192 | .168.1.100    arp |             |        |        |      |      |            |           | Expre | ssion | +    |
|---|---------------|-------------------|-------------|--------|--------|------|------|------------|-----------|-------|-------|------|
|   | Time          | Source            | Destination | Protoc | Length | Info |      |            |           |       |       |      |
|   | 3 3.9963      | Vmware_d1:8e:0c   | Broadcast   | ARP    | 42     | Who  | has  | 192.168.1. | 100? Tel  | 192.  | 168.1 | .103 |
|   | 4 3.9965      | Giga-Byt_6a:9…    | Vmware_d1:8 | ARP    | 60     | 192. | 168. | 1.100 is a | t fc:aa:: | 4:6a: | 9a:a2 |      |
|   |               |                   |             |        |        |      |      |            |           |       |       |      |
|   |               |                   | mmmbed      | h      | artha  |      | fra  |            |           |       |       |      |

Frame 3: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0 Ethernet II, Src: Vmware\_d1:8e:0c (00:0c:29:d1:8e:0c), Dst: Broadcast Destination: Broadcast (ff:ff:ff:ff:ff:ff) Source: Vmware\_d1:8e:0c (00:0c:29:d1:8e:0c) Type: ARP (0x0806) Address Resolution Protocol (request)

| 000 | ff | ff | ff | ff | ff | ff | 00 | 0c | 29 | d1 | 8e | 0c | 08 | 06 | 00 | 01 | · · · · · · · · ) · · · · · · · |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---------------------------------|
| 010 | 08 | 00 | 06 | 04 | 00 | 01 | 00 | 0c | 29 | d1 | 8e | 0c | c0 | a8 | 01 | 67 | g                               |
| 920 | 00 | 00 | 00 | 00 | 00 | 00 | c0 | a8 | 01 | 64 |    |    |    |    |    |    | d                               |

#### Collect ARP Header (Request/Reply)

In order to identify ARP scan, you need to investigate some important parameters whic<sup>L</sup> ≈ could help a network admin to make a correct assumption in concern of ARP scan.

Try to collect the following details as given below:

- Opcode (Request/Reply)
- Source Mac
- Source IP
- Destination MAC
- Destination IP

```
Frame 3: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
Ethernet II, Src: Vmware_d1:8e:0c (00:0c:29:d1:8e:0c), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Address Resolution Protocol (request)
   Hardware type: Ethernet (1)
   Protocol type: IPv4 (0x0800)
   Hardware size: 6
   Protocol size: 4
   Opcode: request (1)
   Sender MAC address: Vmware_d1:8e:0c (00:0c:29:d1:8e:0c)
   Sender IP address: 192.168.1.103
   Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
  Target IP address: 192.168.1.100
000
     ff ff ff ff ff ff 00 0c 29 d1 8e 0c 08 06 00 01
                                                                      )....
     08 00 06 04 00 <mark>01 00 0c</mark>
00 00 00 00 00 00 c0 a8
                                29 d1 8e 0c c0 a8 01 67
010
020
                               01 64
```

Now with help of the following table, you can read the hex value highlighted in above and below image for ARP Request and Reply packets respectively.

| ARP Header =>            | Opcode | Source Mac        | Source IP     | Destination MAC   | Destination IP |
|--------------------------|--------|-------------------|---------------|-------------------|----------------|
|                          |        |                   |               |                   |                |
| Bits Color               | Brown  | Red               | Green         | Purple            | Orange         |
|                          |        |                   |               |                   | _              |
| ARP Request Hex Value    | 01     | 00:0c:29:d1:8e:0c | C0.a8.01.67   | 00:00:00:00:00:00 | C0.a8.01.64    |
|                          | www    | hackingar         | tidles in     |                   |                |
| Decimal value of Request | 1      | Noneed            | 192.168.1.103 | Noneed            | 192.168.1.100  |
|                          |        |                   |               |                   |                |
| ARP Reply Hex Value      | 02     | Fc:aa:14:6a:9a:a2 | C0.a8.01.64   | 00:0c:29:d1:8e:0c | C0.a8.01.67    |
|                          |        |                   |               |                   |                |
| Decimal Value of Reply   | 2      | Noneed            | 192.168.1.100 | Noneed            | 192.168.1.103  |
|                          |        |                   |               |                   |                |

| Frame<br>Ether | 4<br>net | : 6<br>: I | 0 b<br>I, | yte<br>Src | s o<br>: G | n w<br>iga | ire<br>-By | (48<br>t_6a | 30 b<br>a:9a | its<br>:a2 | ),<br>(f | 60<br>c:a | byt<br>a:1 | es<br>4:6 | cap<br>a:9 | ture<br>a:a2 | ed (480  <br>2), Dst: | bits)<br>Vmwa | on<br>are_c | inter<br>1:8e: | fac<br>0c | ce 0<br>(00:0c | :29:d1 | :8e |
|----------------|----------|------------|-----------|------------|------------|------------|------------|-------------|--------------|------------|----------|-----------|------------|-----------|------------|--------------|-----------------------|---------------|-------------|----------------|-----------|----------------|--------|-----|
| Addre          | SS       | Re         | sol       | uti        | on         | Pro        | toc        | ol (        | rep          | ly)        |          | _         |            |           | •          |              |                       |               |             |                |           |                |        |     |
| Har            | dwa      | are        | ty        | pe:        | Et         | her        | net        | (1          | ) CK         | (III)      | ga       | Бe        | <b>e</b>   | es        | -III       |              |                       |               |             |                |           |                |        |     |
| Pro            | to       | col        | ty        | pe:        | IP         | v4         | (0x        | 080         | Ð)           |            |          |           |            |           |            |              |                       |               |             |                |           |                |        |     |
| Har            | dwa      | are        | si        | ze:        | 6          |            |            |             |              |            |          |           |            |           |            |              |                       |               |             |                |           |                |        |     |
| Pro            | to       | col        | si        | ze:        | 4          |            |            |             |              |            |          |           |            |           |            |              |                       |               |             |                |           |                |        |     |
| 0pc            | od       | e:         | rep       | ly         | (2)        |            |            |             |              |            |          |           |            |           |            |              |                       |               |             |                |           |                |        |     |
| Sen            | Ide      | гM         | AC        | add        | res        | s:         | Gig        | a-By        | /t_6         | a:9        | a:a      | 12 (      | fc:        | aa:       | 14:        | 6a:9         | 9a:a2)                |               |             |                |           |                |        |     |
| Sen            | Ide      | rΙ         | Pa        | ddr        | ess        | : 1        | 92.        | 168         | .1.1         | 00         |          |           |            |           |            |              |                       |               |             |                |           |                |        |     |
| Tar            | ge       | tМ         | AC        | add        | res        | s:         | Vmw        | are_        | _d1:         | 8e:        | 0c       | (00       | ):0c       | :29       | :d1        | :8e:         | :0c)                  |               |             |                |           |                |        |     |
| Tar            | .ue.     | t T        | Рa        | ddr        | P55        | · 1        | 92         | 168         | 1.1          | 0.3        |          |           |            |           |            |              |                       |               |             |                |           |                |        |     |
|                |          | _          | ~ ~       | 14         | _          | _          | ~          |             |              | _          |          |           |            |           |            |              | ,                     |               |             | _              |           |                |        |     |
| 0000           | 90       | ΘС         | 29        | d1         | 8e         | 0C         | ŤC         | aa          | 14           | 6a         | 9a       | a2        | 08         | 06        | 00         | 01           | )                     | · · ·         | ]           | • • •          |           |                |        |     |
| 9010           | 98       | 00         | 06        | 04         | 00         | 02         | fc         | aa          | 14           | 6a         | 9a       | a2        | C0         | a8        | 01         | 64           |                       |               | ] <u></u>   | d              |           |                |        |     |
| 9020           | 90       | 0c         | 29        | d1         | 8e         | 0c         | C0         | a8          | 01           | 67         | 00       | 00        | 00         | 00        | 00         | 00           | ···) · · ·            |               | g           |                |           |                |        |     |
| 0030 G         | 90       | 00         | 00        | 00         | 00         | 00         | 00         | 00          | 00           | 00         | 00       | 00        |            |           |            |              |                       |               |             |                |           |                |        |     |

## **Nmap ICMP Scanning**

Now execute given below command which known as "HOST SCAN" to identify a live host in a network by sending **Ping request** with the help of ICMP packet.

nmap -sn 192.168.1.100 -disable-arp-ping

Now above command will send ICMP request packet instead of ARP request for identifying the live host in a network.

Working of NMAP ICMP Ping when a host is live:

- 1. Send ICMP echo **reques**t packet.
- 2. Receive ICMP echo reply.

• Send **TCP SYN** packet on any TCP port (this port must be rarely blocked by network admin).

1. Receive TCP RST-ACK from target's Network.

As a result, NMAP gives "HOST UP" message as shown in given below image.

```
root@kali:~# nmap -sn 192.168.1.100 --disable-arp-ping
Starting Nmap 7.60 ( https://nmap.org ) at 2018-01-09 04:58 EST
Nmap scan report for 192.168.1.100
Host is up (0.00018s latency).
MAC Address: FC:AA:14:6A:9A:A2 (Giga-byte Technology)
Nmap done: 1 IP address (1 host up) scanned in 0.14 seconds
```

5 of 33

渿

#### Step to Identify NMAP ICMP Scan

#### • Collect IP Header Details for Protocol version

For reading data of Ethernet head visit to our previous article "Network packet forensic".

#### NOTE: Ether type for IPv4 is 0x0800

Since we know ICMP is Layer 3 protocol according to the OSI model, therefore, we need to focus on following details for ICMP forensic with help of IP Header of a packet.

Try to collect the following details as given below:

- 1. Ip header length 20 Bytes (5bits\*4=20 bytes)
- 2. Protocol (01 for ICMP)
- 3. Source IP
- 4. Destination IP

From given below image you can observe Hexadecimal information of IP header field and using the given table you can study these value to obtain their original value.

| IP header     | Header | Protocol | Source IP     | Destination IP |
|---------------|--------|----------|---------------|----------------|
| (20 bytes)    | Brown  | Red      | Pink          | Orango         |
| Hex Value     | 5      | 01       | C0.a8.01.67   | C0.a8.01.64    |
| Decimal value | 5      | 1        | 192.168.1.103 | 192.168.1.100  |

|    | ip.ac | ldr = | = 192 | 2.168 | .1.10 | 0    i | icmp |        |       |     |     |     |       |     |       |     |     |    |      |     |      |          |     |      |      |      |      |
|----|-------|-------|-------|-------|-------|--------|------|--------|-------|-----|-----|-----|-------|-----|-------|-----|-----|----|------|-----|------|----------|-----|------|------|------|------|
| р. |       | Time  |       | Sou   | rce   |        |      | Dest   | inati | on  |     |     | Proto | c L | ength | In  | fo  | _  |      |     |      |          |     |      |      |      |      |
| ÷  | 4     | 2.62  | 289   | 192   | .168  | .1.    | 103  | 192    | .16   | 8.1 | .10 | 0   | ICMF  | )   | 42    | 2 E | cho | (  | ping | 3)  | requ | les      | t   | id=  | =0x7 | ′f84 | , se |
| -  | 5     | 2.62  | 290   | 192   | 2.168 | 3.1.   | 100  | 192    | .168  | 8.1 | .10 | 3   | ICMF  | )   | 60    | 9 E | cho | (  | ping | J)  | repi | Ly       |     | id=  | =0x7 | 'f84 | , se |
|    | 6     | 2.62  | 290   | 192   | 2.168 | 3.1.   | 103  | 192    | .168  | 8.1 | .10 | 0   | ТСР   |     | - 58  | 35  | 136 | 2  | → 44 | 13  | [SYI | ۱] ۱     | Seq | =0   | Wir  | 1=10 | 24 l |
|    | - 7   | 2.62  | 291   | 192   | 2.168 | 3.1.   | 100  | 192    | .168  | 8.1 | .10 | 3   | тср   |     | 60    | 94  | 43  | -• | 5136 | 62  | [RS] | Γ, Ι     | ACK | ] \$ | Seq= | :1 A | ck=: |
|    |       |       |       |       |       |        | 0    | TAY IT | າກປ   | he  | al. | an  | ണ     | £1  | db    | aí  | in. |    |      |     |      |          |     |      |      |      |      |
| T  | Fra   | me 4  | : 42  | 2 byt | ces ( | on w   | ire  | (33    | 6 b   | its | 5), | 42  | byte  | es  | capt  | ur  | ed  | (3 | 36 b | bit | s) ( | on       | int | erf  | face | 9 0  |      |
|    | Ethe  | erne  | t II  | Ε, Ši | c: ۱  | /mwa   | re_  | d1:8   | e:0   | с ( | 00: | 0c: | 29:0  | :11 | 8e:0  | c)  | , D | st | : Gi | iga | -Byt | <u>6</u> | a:9 | a:a  | a2 ( | fc:  | aa:: |
|    | Inte  | erne  | t Pr  | oto   | col \ | /ers   | ion  | 4,     | Src   | : 1 | 92. | 168 | 3.1.3 | 103 | , Ds  | t:  | 19  | 2. | 168. | 1.  | 100  |          |     |      |      |      |      |
|    | Inte  | erne  | t Co  | ontro | ol Me | essa   | ige  | Prot   | oco   | 1   |     |     |       |     |       |     |     |    |      |     |      |          |     |      |      |      |      |
|    |       |       |       |       |       |        |      |        |       |     |     |     |       |     |       |     |     |    |      |     |      |          |     |      |      |      |      |
|    |       |       |       |       | -     | -      |      | -      |       |     | -   | -   |       |     |       |     |     |    |      |     |      |          | -   |      |      |      |      |
| 0  | 000   | fc    | aa    | 14 6  | a 9a  | a2     | 00   | Θc     | 29    | d1  | 8e  | 0C  | 08    | 00  | 45 (  | 90  |     |    | j    |     | )    |          | Ε.  |      |      |      |      |
| 0  | 910   | 00    | 1c    | cd 4  | 5 00  | 00     | 38   | 01     | 31    | 80  | C0  | a8  | 01    | 67  | C0 a  | a8  |     |    | Ε    | 8.  | 1    | 0        | 1   |      |      |      |      |

| 020 | 01 | 64 | 08 | 00 | 78 | 7b | 7f | 84 | 00 | 00 | .dx{ |  |
|-----|----|----|----|----|----|----|----|----|----|----|------|--|
|     |    |    |    |    |    |    |    |    |    |    |      |  |

The IP header length is always given in form of the bit and here it is 5 bit which is also

≈

minimum IP header length and to make it 20 bytes multiple 5 with 4 i.e. 5\*4 bytes =20 bytes.

#### Identify ICMP Message type (Request /Reply)

Now we had discussed above according to Nmap ICMP scanning technique the **1st packet** is should be **ICMP echo request** packet and **a 2nd packet** is should be of **ICMP echo reply** packet.

| Inte | ternet Control Message Protocol<br>Type: 8 (Echo (ping) request)<br>Code: 0<br>Checksum: 0x787b [correct]<br>[Checksum Status: Good]<br>Identifier (BE): 32644 (0x7f84)<br>Identifier (LE): 33919 (0x847f)<br>Sequence number (BE): 0 (0x0000)<br>Sequence number (LE): 0 (0x0000)<br>[Response frame: 5] |     |      |     |      |      |     |       |      |          |     |       |    |    |    |    |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|------|-----|-------|------|----------|-----|-------|----|----|----|----|--|
| T    | ype:                                                                                                                                                                                                                                                                                                      | 8   | (Ec  | ho  | (pi  | .ng) | re  | que   | st)  |          |     |       |    |    |    |    |  |
| C    | ode:                                                                                                                                                                                                                                                                                                      | Θ   |      |     |      |      |     |       |      |          |     |       |    |    |    |    |  |
| C    | heck                                                                                                                                                                                                                                                                                                      | sum | 1: O | x78 | 7b   | [co  | rre | ect]  |      |          |     |       |    |    |    |    |  |
| [(   | Chec                                                                                                                                                                                                                                                                                                      | ksu | Im S | tat | us:  | Go   | od] |       |      | 2-0      | ~   | 8-    |    |    |    |    |  |
| I    | dent                                                                                                                                                                                                                                                                                                      | ifi | er   | (BE | ):   | 326  | 44  | (0x)  | 7f84 | 1)       | 92  | illi. |    |    |    |    |  |
| I    | dent                                                                                                                                                                                                                                                                                                      | ifi | er   | (LE | ):   | 339  | 19  | (0x8  | 847f | )        |     |       |    |    |    |    |  |
| S    | eque                                                                                                                                                                                                                                                                                                      | nce | e nu | mbe | er ( | BE)  | : 0 | ) (0) | x000 | 00)      |     |       |    |    |    |    |  |
| S    | eque                                                                                                                                                                                                                                                                                                      | nce | e nu | mbe | er ( | LE)  | : 0 | ) (0) | x000 | 00)      |     |       |    |    |    |    |  |
| []   | Resp                                                                                                                                                                                                                                                                                                      | ons | e f  | ram | ie:  | 5]   |     |       |      |          |     |       |    |    |    |    |  |
|      |                                                                                                                                                                                                                                                                                                           |     |      |     |      |      |     |       |      |          |     |       |    |    |    |    |  |
| 000  | £                                                                                                                                                                                                                                                                                                         |     | 4.4  | 6.0 | 0.0  | - 0  | 00  | 0.5   | 20   | <b>.</b> | 0.0 | 0.0   | 00 | ~~ | 45 | 00 |  |
| 000  | тс                                                                                                                                                                                                                                                                                                        | aa  | 14   | 6a  | 9a   | a2   | 00  | ⊎C    | 29   | d1       | 8e  | ⊎C    | 08 | 00 | 45 | 00 |  |
| 010  | 00                                                                                                                                                                                                                                                                                                        | 1C  | cd   | 45  | 00   | 00   | 38  | 01    | 31   | 80       | C0  | a8    | 01 | 67 | C0 | a8 |  |
| 020  | 01                                                                                                                                                                                                                                                                                                        | 64  | 08   | 00  | 78   | 7b   | 7f  | 84    | 00   | 00       |     |       |    |    |    |    |  |
|      |                                                                                                                                                                                                                                                                                                           |     |      |     |      |      |     |       |      |          |     |       |    |    |    |    |  |

Now with help of the following table, you can read hex value highlighted in above and below image for ICMP Request and Reply packets respectively.

| IPHeader =>                 | ІСМР Туре | Source IP     | Destination IP |
|-----------------------------|-----------|---------------|----------------|
| Bits color                  | Yellow    | Pink          | Orange         |
| ICMP Echo Request Hex Value | 108 CKING | C0.a8.01.67   | C0.a8.01.64    |
| Decimal value of Request    | 8         | 192.168.1.103 | 192.168.1.100  |
| ICMP Echo Reply Hex Value   | 00        | C0.a8.01.64   | C0.a8.01.67    |
| Decimal Value of Reply      | 0         | 192.168.1.100 | 192.168.1.103  |

-

| Inte  | erne                                                                 | t C  | ont  | rol  | Ме   | ssa | ge   | Pro  | toco | 1         |    |    |    |    |    |    |  |
|-------|----------------------------------------------------------------------|------|------|------|------|-----|------|------|------|-----------|----|----|----|----|----|----|--|
| T     | Type: 0 (Echo (ping) reply)<br>Code: 0<br>Chackaum: 0x807h [correct] |      |      |      |      |     |      |      |      |           |    |    |    |    |    |    |  |
| C     | ode:                                                                 | 0    |      |      |      |     |      |      |      |           |    |    |    |    |    |    |  |
| CI    | heck                                                                 | sum  | n: 0 | x80  | )7b  | [co | rre  | ect] |      |           |    |    |    |    |    |    |  |
| ି [(  | Chec                                                                 | ksu  | Im S | stat | us:  | Go  | od]  | 1eT  | ាា   | <u>la</u> | સી | 5  |    |    |    |    |  |
| I     | dent                                                                 | ifi  | er   | (BE  | ):   | 326 | 44   | (0x  | 7f84 | )         |    |    |    |    |    |    |  |
| I     | dent                                                                 | ifi  | er   | (LE  | :(   | 339 | 19   | (0x  | 847f | •)        |    |    |    |    |    |    |  |
| Se    | eque                                                                 | ence | e nu | imbe | er ( | BE) | : 0  | ) (0 | x000 | 0))))     |    |    |    |    |    |    |  |
| Se    | eque                                                                 | ence | e nu | ımbe | er ( | LE) | : 0  | ) (0 | x000 | 00)       |    |    |    |    |    |    |  |
| 5 pbc | Requ                                                                 | est  | fr   | ame  | : 4  | 1   |      |      |      |           |    |    |    |    |    |    |  |
| Ī     | Resp                                                                 | ons  | e t  | ime  | : 0  | .16 | 51 m | ıs]  |      |           |    |    |    |    |    |    |  |
|       |                                                                      |      |      |      |      |     |      | -    |      |           |    |    |    |    |    |    |  |
| 000   | 00                                                                   | 0c   | 29   | d1   | 8e   | 0c  | fc   | aa   | 14   | 6a        | 9a | a2 | 08 | 00 | 45 | 00 |  |
| 010   | 00                                                                   | 1c   | 66   | с9   | 00   | 00  | 80   | 01   | 4f   | fc        | C0 | a8 | 01 | 64 | C0 | a8 |  |
| 920   | 01                                                                   | 67   | 00   | 00   | 80   | 7b  | 7f   | 84   | 00   | 00        | 00 | 00 | 00 | 00 | 00 | 00 |  |
| 030   | 00                                                                   | 00   | 00   | 00   | 00   | 00  | 00   | 00   | 00   | 00        | 00 | 00 |    |    |    |    |  |

#### **Identify TCP Flags**

AS discussed above after ICMP reply, the **3rd packet** should be **of TCP-SYN** packet and **4<sup>th</sup>** should be of **TCP-RST/ACK**. We had seen in our previous article the hex value of all TCP-Flags are different from each other, so if we are talking for TCP-SYN flag then its Hex value should 0x02.

From given below table you can observe the sequence of TCP flag and how bits of these flags are set for sending the packet to the destination port.

For example, if you found TCP SYN packet then the bit for **SYN flag** is set **1** for which the binary value will be **000000010** and its hexadecimal will be **0x02**.

| NS | CWR | ECE | URG | ACK | PSH | RST | SYN | FIN |
|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   |

Sometime you will get the combination of two or more flag in TCP header, so in that scenario take the help of the following table to read the Hex value of such packet to identify TCP flags bits are being set 1.

For example, if you found **TCP SYN/ACK** packets then indicates that SYN & ACK flags are set 1 for which the binary value will be **000010010** and its hexadecimal will be **0x12** 

| NS | CWR | ECE | URG | ACK | PSH | RST | SYN | FIN |
|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0   | 0   | 0   | 1   | 0   | 0   | 1   | 0   |

≈

Therefore I design below table to let you know more about of Hex value when two or  $m_{U_1}$ 

than two flags are set 1.

| TCP Flag        | Decimal Value           | HexValue       |
|-----------------|-------------------------|----------------|
| SYN + ACK       | 2 + 16 = 18             | 2 + 10 = 12    |
| RST + ACK       | 4 + 16 = 20             | 4 + 10 = 14    |
| PSH + ACK       | 8 + 16 = 24             | 8 + 10 = 18    |
| FIN + PSH + URG | 1 + 8 + 32 = 41         | 1+ 8 + 20 = 29 |
| URG             | hack <sup>32</sup> gart | 20             |
| ACK             | 16                      | 10             |
| PSH             | 8                       | 08             |
| RST             | 4                       | 04             |
| SYN             | 2                       | 02             |
| FIN             | 1                       | 01             |

Frame 6: 58 bytes on wire (464 bits), 58 bytes captured (464 bits) on interface Ethernet II, Src: Vmware\_d1:8e:0c (00:0c:29:d1:8e:0c), Dst: Giga-Byt\_6a:9a:a2 ( Internet Protocol Version 4, Src: 192.168.1.103, Dst: 192.168.1.100 Transmission Control Protocol, Src Port: 51362, Dst Port: 443, Seq: 0, Len: 0

|     |    |    |    |    |    | _  |    | the second se | and the second second | _  |    | _  |    | _  | _  |    |         |
|-----|----|----|----|----|----|----|----|-----------------------------------------------------------------------------------------------------------------|-----------------------|----|----|----|----|----|----|----|---------|
| 000 | fc | aa | 14 | 6a | 9a | a2 | 00 | 0c                                                                                                              | 29                    | d1 | 8e | 0c | 08 | 00 | 45 | 00 | j )E.   |
| 010 | 00 | 2c | fa | 3e | 00 | 00 | 33 | 06                                                                                                              | 09                    | 72 | c0 | a8 | 01 | 67 | c0 | a8 | .,.>3rg |
| 920 | 01 | 64 | c8 | a2 | 01 | bb | bc | af                                                                                                              | 75                    | 68 | 00 | 00 | 00 | 00 | 60 | 02 | .d uh`. |
| 030 | 04 | 00 | 13 | 95 | 00 | 00 | 02 | 04                                                                                                              | 05                    | b4 |    |    |    |    |    |    |         |
|     |    |    |    |    |    |    |    |                                                                                                                 |                       |    |    |    |    |    |    |    |         |

The image given above contains the hex value of **TCP-SYN** packets and the image given below contains the hex value of **TCP-RST/ACK** packet from which we can calculate the source port and the destination port of the packet respectively like one given below.

| TCP Header                   | Source Port | Destination Port | Hex value of Flag |
|------------------------------|-------------|------------------|-------------------|
| Bits Color                   | Light Brown | Yellow           | Green             |
| TCP-SYN Packets Hex value    | C8 a2       | 01 bb C (CS-III) | 02                |
| Decimal Value                | 51362       | 443              | 2                 |
| TCP-RST/ACK packet Hex value | 01 bb       | C8 a2            | 14                |
| Decimal Value                | 443         | 51362            | 20                |

**Conclusion!** So as stated above regarding the working of NMAP ICMP scan, we had obtained the hex value for every packet in the same sequence. Obtaining the hex value for every packet in such sequence gives the indication to the Penetration tester that Someone has Choose NMAP ICMP scan for Network enumeration. Transmission Control Protocol, Src Port: 443, Dst Port: 51362, Seq: 1, Ack: 1,

|     | mmm bealthrandlabalta |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |       |          |  |
|-----|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|----------|--|
| 000 | 00                    | 0c | 29 | d1 | 8e | 0c | fc | aa | 14 | 6a | 9a | a2 | 08 | 00 | 45 | 00 | )     | <br>.jE. |  |
| 010 | 00                    | 28 | 66 | ca | 40 | 00 | 80 | 06 | 0f | ea | c0 | a8 | 01 | 64 | сO | a8 | .(f.@ | <br>d    |  |
| 020 | 01                    | 67 | 91 | bb | c8 | a2 | 00 | 00 | 00 | 00 | bc | af | 75 | 69 | 50 | 14 | .g    | <br>uiP. |  |
| 020 | 00                    | 00 | 2f | 3e | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |    |    |    |    | />.   | <br>     |  |
|     |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |       |          |  |
|     |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |       |          |  |
|     |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |       |          |  |

## Default NMAP Scan (Stealth Scan)

Here we are going with the default scan method to enumerate the "open" state of any specific port

nmap -p80 192.168.1.100

Working of Default Scan for open port:

- 1. Send TCP-SYN packet
- 2. Receive TCP-SYN/ACK
- 3. Send TCP-RST packet

It is also known as half Open TCP Scan as it does not send ACK packet after receive SYN/ACK packet.

```
root@kali:~# nmap -p80 192.168.1.100
Starting Nmap 7.60 ( https://nmap.org ) at 2018-01-09 09:06 EST
Nmap scan report for 192.168.1.100
Host is up (0.00018s latency).
PORT STATE SERVICE
80/tcp open http
MAC Address: FC:AA:14:6A:9A:A2 (Giga-byte Technology)
Nmap done: 1 IP address (1 host up) scanned in 0.25 seconds
```

Step to Identify NMAP Default Scan (Stealth Scan)

• Collect IP Header Details for Protocol Version

For reading data of Ethernet head visit to our previous article "Network packet forensic

#### NOTE: Ether type for IPv4 is 0x0800.

Try to collect the following details as given below:

- 1. Ip header length 20 Bytes (5bits\*4=20 bytes)
- 2. Protocol (6 for TCP)
- 3. Source IP
- 4. Destination IP

| IP header     | Header | Protocol | Source IP     | Destination IP |
|---------------|--------|----------|---------------|----------------|
| (20 bytes)    | length | nakihana | fides.fn      |                |
| Bits Color    | Brown  | Red      | Pink          | Orange         |
| Hex Value     | 5      | 06       | C0.a8.01.67   | C0.a8.01.64    |
| Decimal value | 5      | 6        | 192.168.1.103 | 192.168.1.100  |

From given below image you can observe Hexadecimal information of the IP header field and using the given table you can study these value to obtain their original value.

|     | ip.ac                                   | ddr =                        | = 19                         | 2.1                        | 58.1                       | .100                     | )                        |                            |                      |                                  |                            |                   |                      |                          |                      |                                    |                              |                             |                       |                      |                              |                              | X                          | →                          | •                             | Expre                       | ssion                       |                            | +                        |
|-----|-----------------------------------------|------------------------------|------------------------------|----------------------------|----------------------------|--------------------------|--------------------------|----------------------------|----------------------|----------------------------------|----------------------------|-------------------|----------------------|--------------------------|----------------------|------------------------------------|------------------------------|-----------------------------|-----------------------|----------------------|------------------------------|------------------------------|----------------------------|----------------------------|-------------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------|
| No  |                                         | Time                         |                              | S                          | ourc                       | e                        |                          |                            | 0                    | Destin                           | atio                       | n                 |                      | Prot                     | oc L                 | .engt                              | h Ir                         | fo                          |                       |                      |                              |                              |                            |                            |                               |                             |                             |                            |                          |
|     | 13<br>14<br>15<br>16                    | 9.93<br>9.93<br>9.93<br>9.93 | 566.<br>568.<br>568.<br>571. | . 1<br>. 1<br>. 1          | 92.<br>92.<br>92.<br>92.   | 168<br>168<br>168<br>168 | .1.<br>.1.<br>.1.<br>.1. | 103<br>100<br>103<br>103   | W                    | 192.1<br>192.1<br>192.1<br>192.1 | 168<br>168<br>168<br>168   | .1.<br>110        | 1<br>1<br>1          | TCP<br>TCP<br>TCP<br>TCP | EG                   |                                    | 74 3<br>56 8<br>54 3<br>54 3 | 4724<br>0 →<br>4724<br>4724 | 1 →<br>347<br>1 →     | 80<br>24<br>80<br>80 | [SYN<br>[SYN<br>[ACK<br>[RST | ] Se<br>, A0<br>] Se<br>, A0 | eq=0<br>CK]<br>eq=1<br>CK] | Wir<br>Seq=<br>Ack<br>Seq= | n=2<br>=0<br>k=1<br><b>=1</b> | 9200<br>Ack=<br>Win<br>Ack= | Ler<br>1 Wi<br>=293<br>1 Wi | n=0<br>In=6<br>312<br>In=2 | MSS<br>553<br>Len<br>931 |
| • • | Fra<br>Eth<br>Int                       | me 1<br>erne<br>erne         | 3:<br>t I<br>t P             | 74<br>I,<br>rot            | byt<br>Src<br>oco          | es<br>: V<br>l V         | on<br>/mwa<br>/ers       | wir<br>re_<br>ion          | e (<br>d1:<br>4,     | 592<br>8e:0<br>Src               | bit<br>)c (                | s),<br>00:<br>92. | 74<br>0c:<br>168     | by<br>29:                | tes<br>d1:<br>103    | ca<br>8e:<br>, D                   | ptu<br>0c)<br>st:            | red<br>, Ds<br>192          | (59<br>t:<br>.16      | 2 b<br>Gig<br>8.1    | its)<br>a-By1<br>.100        | on<br>:_6a                   | int<br>:9a                 | erfa<br>:a2                | ace<br>(f                     | 0<br>c:aa                   | :14:                        | 6a:                        | •<br>9a:                 |
| Þ   | Tra                                     | nsmi                         | ssi                          | on                         | Con                        | tro                      | ol (P                    | rot                        | 000                  | 1, S                             | rc                         | Por               | t:                   | 347                      | 24,                  | Ds                                 | t P                          | ort:                        | 80                    | , s                  | eq: (                        | ), L                         | .en:                       | Θ                          |                               |                             |                             |                            |                          |
|     | )00<br>) <b>10</b><br>)20<br>)30<br>)40 | fc<br>00<br>01<br>72<br>fa   | aa<br>3c<br>64<br>10<br>5e   | 14<br>ee<br>87<br>84<br>00 | 6a<br>7d<br>a4<br>4a<br>00 | 9a<br>40<br>00<br>00     | a2<br>00<br>50<br>00     | 00<br>40<br>e9<br>02<br>01 | 0c<br>06<br>04<br>03 | 29<br>c8<br>03<br>05<br>03       | d1<br>22<br>bf<br>b4<br>07 | 8e<br>00<br>04    | 0c<br>a8<br>00<br>02 | 08<br>01<br>00<br>08     | 00<br>67<br>00<br>0a | 4 <mark>5</mark><br>c0<br>a0<br>f5 | 00<br>a8<br>02<br>0c         | <br>. (<br>. /              | j.<br><.}@<br>d<br>J. | ).@.<br>.P           | )                            | g                            | E.<br><br>                 |                            |                               |                             |                             |                            | 4                        |

Analysis TCP Header Details

Since from the above image we had to obtain Source and Destination IP and protocol used for communication i.e. TCP, now we need to identify the source and Destination port and TCP Flag used for establishing the connection between two systems.

.d.b.PV. !W....`.

. . . . . . . . . .

In the image we have highlighted source port in "Light brown" colour and destination port in "yellow colour", you can use given below table to read the hex value of the given image.

| TCP Header                | Source Port | Destination Port    | Hex value of Flag |
|---------------------------|-------------|---------------------|-------------------|
| Bits Color                | Light Brown | Yellow-Q-Q-Q-       | Green             |
| TCP-SYN Packets Hex value | 92 62       | 00 50 10 010 010 51 | 0x02              |
| Decimal Value             | 38498       | 80                  | 2                 |

So we come to know that here **TCP-SYN** packet is used for sending connection request on Port 80.

```
Transmission Control Protocol, Src Port: 38498, Dst Port: 80, Seq: 0, Len: 0
   Source Port: 38498
   Destination Port: 80
   [Stream index: 0]
   [TCP Segment Len: 0]
   Sequence number: 0
                         (relative sequence number)
   Acknowledgment number: 0
   0110 .... = Header Length: 24 bytes (6)
 Flags: 0x002 (SYN)
   Window size value: 1024
   [Calculated window size: 1024]
   Checksum: 0x01f6 [unverified]
   [Checksum Status: Unverified]
   Urgent pointer: 0
 Options: (4 bytes), Maximum segment size
0000
     fc aa 14 6a 9a a2 00 0c
                              29 d1 8e 0c 08 00 45 00
                                                         ...j.... )....E.
     00 2c ea 8e 00 00 38 06
                              14 22 c0 a8 01 67 c0 a8
                                                         .,...8. ."...g..
010
```

Again we read next packet then here we found **hex value 12** indicates that **TCP-SYN/ACK** has been sending from port 80.

21 57 00 00 00 00 60 02

| Bits Color     Light Brown     Yellow     Green       TCP-SYN/ACK Packets Hex value     00 50     92 62     0x12       Decimal Value     80     28498     18 | TCP Header                    | Source Port      | Destination Port | Hex value of Flag |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|------------------|-------------------|
| TCP-SYN/ACK Packets Hex value     00 50     92 62     0x12       Decimal Value     80     28498     18                                                       | Bits Color                    | Light Brown      | Yellow           | Green             |
| Decimal Value 80 29499 19                                                                                                                                    | TCP-SYN/ACK Packets Hex value | 00 50 6 6 6 10 9 | 92 62 0 0 0 0    | 0x12              |
|                                                                                                                                                              | Decimal Value                 | 80               | 38498            | 18                |

05 b4

Take the help given above table to read the hex value of the given image. Hex value 12 for TCP flag is used for SYN + ACK as explained above, and we get 0x12 by adding Hex value " 0x02 of SYN" and "0x10 of ACK".

)020

0030

01 64 96 62 00 50 56 0b

04 00 01 f6 00 00 02 04

| Transmission Control Protocol, Src Port: 80, Dst Port: 38498, Seq: 0, Ack: 1, Len: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Port: 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Destination Port: 38498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [Stream index: 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [TCP Segment_Len: 0] Decol for a final sector of the secto |
| Sequence number: 0 (relative sequence number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Acknowledgment number: 1 (relative ack number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0110 = Header Length: 24 bytes (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Flags: 0x012 (SYN, ACK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Window size value: 64240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [Calculated window size: 64240]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Checksum: 0x11c5 [unverified]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [Checksum Status: Unverified]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Urgent pointer: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Options: (4 bytes), Maximum segment size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [SEQ/ACK analysis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 000 00 0c 29 d1 8e 0c fc aa 14 6a 9a a2 08 00 45 00)jE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 010 00 2c <u>69 27</u> 40 00 80 06 0d 89 c0 a8 01 64 c0 <u>a8</u> .,i'@d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 020 01 67 00 50 96 62 17 52 e1 dc 56 0b 21 58 60 12 .g.P.b.RV.!X`.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 030 fa f0 11 c5 00 00 02 04 05 b4 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

In the image given below, we come to know that **TCP-RST** packet is used for sending Reset connection to Port 80.

| TCP Header                 | Source Port | <b>Destination Port</b> | Hex value of Flag |
|----------------------------|-------------|-------------------------|-------------------|
| Bits Color                 | Light Brown | Yellow Coo fo           | Green             |
| TCP –RST Packets Hex value | 96 62       | 00 50                   | 0x04              |
| Decimal Value              | 38498       | 80                      | 4                 |

**Conclusion!** So as declared above regarding the working of NMAP default scan or NMAP stealth scan we had to obtain the hex value for every packet in the same sequence. Obtaining the hex value for every packet in such sequence gives an indication to the Penetration tester that Someone has Choose NMAP Default scan for Network enumeration.

Transmission Control Protocol, Src Port: 38498, Dst Port: 80, Seq: 1, Len: 0 Source Port: 38498 Destination Port: 80 [Stream index: 0] [TCP Segment Len: 0] Sequence number: 1 (relative sequence number) Acknowledgment number: 0 0101 .... = Header Length: 20 bytes (5) Flags: 0x004 (RST) Window size value: 0 [Calculated window size: 0] [Window size scaling factor: -2 (no window scaling used)] Checksum: 0x1daf [unverified] [Checksum Status: Unverified] Urgent pointer: 0 • 0000 fc aa 14 6a 9a a2 00 0c 29 d1 8e 0c 08 00 45 00 ...j... )....E. 0010 00 28 <u>28 6a 40 00</u> 40 06 8e 4a c0 a8 01 67 c0 a8 .((j@.@. .J...g.. 0020 01 64 96 62 00 50 56 0b 21 58 00 00 00 00 50 04 .d.b.PV. !X....P. 00 00 1d af 00 00 0030 . . . . . .

## **Nmap TCP Scan**

Here we are going with TCP scan to enumerate state of any specific port

nmap -sT -p80 192.168.1.100

Working of Default Scan for open port:

- 1. Send TCP-SYN packet
- 2. Receive TCP-SYN/ACK
- 1. Send TCP-ACK packet
- 2. Send TCP-RST/ACK packet

| <pre>root@kali:~# nmap -sT -p80 192.168.1.100</pre>                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Starting Nmap 7.60 ( https://nmap.org ) at 2018-01-09 03:09 EST<br>Nmap scan report for 192.168.1.100<br>Host is up (0.00018s latency). |
| PORT STATE SERVICE<br>80/tcp open http                                                                                                  |
| MAC Address: FC:AA:14:6A:9A:A2 (Giga-byte Technology)                                                                                   |
| Nmap done: 1 IP address (1 host up) scanned in 0.18 seconds                                                                             |

#### Step to Identify NMAP TCP Scan

• Collect IP Header Details for Protocol Version

For reading data of Ethernet head visit to our previous article "Network packet forensic".

#### NOTE: Ether type for IPv4 is 0x0800.

Try to collect the following details as given below:

- 1. Ip header length 20 bytes (5bits\*4=20 bytes)
- 2. Protocol (06 for TCP)
- 3. Source IP
- 4. Destination IP

| IP header<br>(20 bytes) | Header | Protocol | Source IP     | Destination IP |
|-------------------------|--------|----------|---------------|----------------|
| Bits Color              | Brown  | Red      | Pink          | Orange         |
| Hex Value               | 5      | 06       | C0.a8.01.67   | C0.a8.01.64    |
| Decimal value           | 5      | 6        | 192.168.1.103 | 192.168.1.100  |

It is quite similar to NMAP stealth Scan and using a given table you can study these values to obtain their original value.

\*

Forensic Investigation of Nmap Scan using Wireshark -...

|    | ip.ac                           | ldr =                        | = 19                       | 2.16                       | 8.1.1                                 | 100                  |                      |                            |                      |                            |                            |                   |                      |                          |                      |                                    |                              |                             |                        |                         |                                  |                      | X                      |                            | -) E                    | xpres                          | sion                       | .                            | +                        |
|----|---------------------------------|------------------------------|----------------------------|----------------------------|---------------------------------------|----------------------|----------------------|----------------------------|----------------------|----------------------------|----------------------------|-------------------|----------------------|--------------------------|----------------------|------------------------------------|------------------------------|-----------------------------|------------------------|-------------------------|----------------------------------|----------------------|------------------------|----------------------------|-------------------------|--------------------------------|----------------------------|------------------------------|--------------------------|
| No |                                 | Time                         |                            | So                         | urce                                  |                      |                      |                            | D                    | )estin                     | atio                       | n                 |                      | Prot                     | oc L                 | engt                               | h In                         | fo                          |                        |                         |                                  |                      |                        |                            |                         |                                |                            |                              |                          |
|    | 13<br>14<br>15<br>16            | 9.95<br>9.95<br>9.95<br>9.95 | 566<br>568<br>568<br>571   | 19<br>19<br>19<br>19       | 2.1<br>2.1<br>2.1<br><mark>2.1</mark> | 68<br>68<br>68<br>68 | .1.<br>.1.:<br>.1.:  | 103<br>100<br>103<br>103   |                      | 92.<br>92.<br>92.          | 168<br>168<br>168<br>168   |                   |                      | TCP<br>TCP<br>TCP<br>TCP | ar                   |                                    | 4 34<br>6 80<br>4 34<br>4 34 | 4724<br>9 +<br>4724<br>4724 | , →<br>347<br>, →      | 80<br>24<br>80<br>80    | [SYN]<br>[SYN,<br>[ACK]<br>[RST, | Se<br>AC<br>Se<br>AC | q=0<br>K]<br>q=1<br>K] | Win<br>Seq=<br>Ack<br>Seq= | =29<br>0 A<br>=1<br>1 A | 0200<br>Ack=1<br>Win=<br>Ack=1 | Len:<br>Wir<br>293:<br>Wir | =0 M<br>n=65<br>12 L<br>n=29 | 1SS<br>553<br>.en<br>931 |
| •  | Fra<br>Eth                      | me 1<br>erne<br>erne         | 3: 1<br>t II<br>t Pi       | 74 k<br>I, S               | yte<br>Src:                           | es<br>Vi             | on<br>mwa<br>ers     | wir<br>re_<br>ion          | e (<br>d1:<br>4,     | 592<br>8e:0<br>Src         | bit<br>c (                 | s),<br>00:<br>92. | 74<br>0c:<br>168     | by<br>29:                | tes<br>d1:<br>103    | ca<br>8e:0                         | ptur<br>0c),<br>st:          | red<br>Ds<br>192            | (59)<br>t:<br>.16      | 2 b<br>Gig<br>8.1       | its)<br>a-Byt<br>.100            | on<br>_6a            | int<br>:9a             | erfa<br>:a2                | ce<br>(fc               | 0<br>:aa:                      | 14:6                       | )a:9                         | a:                       |
|    | Tra                             | nsmi                         | ssi                        | on C                       | ont                                   | ro                   | 1 <b>P</b>           | rot                        | oco                  | 1, S                       | rc                         | Por               | t:                   | 347                      | 24,                  | Ds                                 | t Po                         | ort:                        | 80                     | , s                     | eq: 0                            | , L                  | en:                    | Θ                          |                         |                                |                            |                              |                          |
|    | 000<br>010<br>020<br>030<br>040 | fc<br>00<br>01<br>72<br>fa   | aa<br>3c<br>64<br>10<br>5e | 14<br>ee<br>87<br>84<br>00 | 6a 9<br>7d 4<br>a4 (<br>4a (<br>90 (  | 9a<br>40<br>00<br>00 | a2<br>00<br>50<br>00 | 00<br>40<br>e9<br>02<br>01 | 0C<br>06<br>04<br>03 | 29<br>c8<br>03<br>05<br>03 | d1<br>22<br>bf<br>b4<br>07 | 8e<br>00<br>04    | 0c<br>a8<br>00<br>02 | 08<br>01<br>00<br>08     | 00<br>67<br>00<br>0a | 4 <mark>5</mark><br>c0<br>a0<br>f5 | 00<br>a8<br>02<br>0c         | <br>.d<br>r.                | j.<br><.}@<br>1<br>.J. | ).@ <mark>.</mark><br>P | )                                | E                    | I.<br><br>             |                            |                         |                                |                            |                              | •                        |

• Analysis TCP Header Details

NMAP TCP Scan follows **3-way handshake of TCP** connection for enumeration open port. Identifying source and destination port along with Flag hex value (**TCP-SYN**) are similar as above.

| TCP Header                  | Source Port | Destination Port | Hex value of Flag |
|-----------------------------|-------------|------------------|-------------------|
| Bits Color WWW              | Light Brown | Yellow es In     | Green             |
| TCP – SYN Packets Hex value | 87 a4       | 00 50            | 0x02              |
| Decimal Value               | 34724       | 80               | 2                 |

So we come to know that here **TCP-SYN** packet is used for sending connection request on Port 80.

Transmission Control Protocol, Src Port: 34724, Dst Port: 80, Seq: 0, Len: 0 Source Port: 34724 Destination Port: 80 [Stream index: 0] [TCP Segment Len: 0] (relative sequence number) Sequence number: 0 Acknowledgment number: 0 1010 .... = Header Length: 40 bytes (10) Flags: 0x002 (SYN) Window size value: 29200 [Calculated window size: 29200] Checksum: 0x844a [unverified] [Checksum Status: Unverified] Urgent pointer: 0 Options: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation

 0000
 fc aa 14 6a 9a a2 00 0c
 29 d1 8e 0c 08 00 45 00
 ...j...)...E.

 0010
 00 3c ee 7d 40 00 40 06
 c8 22 c0 a8 01 67 c0 a8
 ...j...)...E.

 0020
 01 64 87 a4 00 50 e9 c6
 03 bf 00 00 00 00 a0 02
 ...j....

 0030
 72 10 84 4a 00 00 02 04
 05 b4 04 02 08 0a f5 0c
 r...j...

 0040
 fa 5e 00 00 00 01 03
 03 07
 ^..............

Again we read next packet then here we found hex value 12 indicates that TCP-SYN/ACK

has been sent via port 80.

| TCP Header                      | Source Port       | Destination Port | Hex value of Flag |
|---------------------------------|-------------------|------------------|-------------------|
| Bits Color                      | Light Brown       | Yellow           | Green             |
| TCP – SYN/ACK Packets Hex value | 00 50 00 00 00 00 | 87 a4            | 12                |
| Decimal Value                   | 80                | 34724            | 18                |

```
Transmission Control Protocol, Src Port: 80, Dst Port: 34724, Seq: 0, Ack: 1, Len:
    Source Port: 80
    Destination Port: 34724
    [Stream index: 0]
    [TCP Segment Len: 0]
    Sequence number: 0
                          (relative sequence number)
    Acknowledgment number: 1
                                (relative ack number)
    1000 .... = Header Length: 32 bytes (8)
  Flags: 0x012 (SYN, ACK)
    Window size value: 65535
    [Calculated window size: 65535]
    Checksum: 0xae76 [unverified]
    [Checksum Status: Unverified]
    Urgent pointer: 0
  Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-
  [SEQ/ACK analysis]
€.
      00 0c 29 d1 8e 0c fc aa
                               14 6a 9a a2 08 00 45 00
                                                         ..)...E.
      00 34 52 33 40 00 80 06
                               24 75 c0 a8 01 64 c0 a8
                                                         .4R3@... $u...d..
0020
      01 67 00 50 87 a4 ec 9c
                               da 55 e9 c6 03 c0 80 12
                                                         .g.P.... .U......
0030
      ff ff ae 76 00 00 02 04 05 b4 01 03 03 08 01 01
                                                         ...V.... ......
0040
      04 02
                                                         . .
```

The only difference between Stealth Scan and TCP scan is that here a packet of ACK fice

sent by source machine who initiate the TCP communication. Again we read next packet then here we found hex value 0x10 indicates that **TCP- ACK** has been sent via port 80.

| TCP Header                  | Source Port | <b>Destination Port</b> | Hex value of Flag |
|-----------------------------|-------------|-------------------------|-------------------|
| Bits Color                  | Light Brown | Yellow Coro fto         | Green             |
| TCP – ACK Packets Hex value | 87 a4       | 00 50                   | 10                |
| Decimal Value               | 34724       | 80                      | 16                |
|                             |             |                         |                   |

**Conclusion!** So as stated above regarding the working of NMAP TCP scan, we had obtained the hex value for every packet in the same sequence. Obtaining the hex value for every packet in such sequence gives an indication to the Penetration tester that Someone has Choose NMAP Default scan for Network enumeration.

## NOTE: For packet TCP-RST/ACK the hex value will be " 0x14" send by the attacker machine



## **Nmap FIN Scan**

Here we are going with TCP-FIN scan to enumerate "OPEN" state of a particular port in any Linux based system, therefore, execute given below command.

```
nmap -sF -p22 192.168.1.104
```

Working of FIN Scan for open port: Send 2 packets of TCP-FIN on a specific port

渿

FIN is part TCP flag and NMAP used FIN flag to initiate TCP communication instead of following three-way handshake communication.



#### Step to Identify NMAP FIN Scan

• Collect IP Header Details for Protocol Version

For reading data of Ethernet head visit to our previous article "Network packet forensic".

#### NOTE: Ether type for IPv4 is 0x0800

Try to collect the following details as given below:

- 1. Ip header length 20 Bytes (5 bits\*4=20 bytes)
- 2. Protocol (06 for TCP)
- 3. Source IP
- 4. Destination IP

It is quite similar to NMAP above Scan and using given below table you can study these values to obtain their original value.

| IP header<br>(20 bytes) | Header<br>Jengthom Co | Protocol | Source IP     | Destination IP |
|-------------------------|-----------------------|----------|---------------|----------------|
| Bits Color              | Brown                 | Red      | Pink          | Orange         |
| Hex Value               | 5                     | 06       | C0.a8.01.67   | C0.a8.01.68    |
| Decimal value           | 5                     | 6        | 192.168.1.103 | 192.168.1.104  |

| ij | p.ad | dr =: | = 19 | 2.1 | 68.1 | .104 | ŀ          |     |       |        |          |      |     |       |      |        |      |      |      |       |      |     |     |     | ×   |       | •] E | Expression |
|----|------|-------|------|-----|------|------|------------|-----|-------|--------|----------|------|-----|-------|------|--------|------|------|------|-------|------|-----|-----|-----|-----|-------|------|------------|
| р. | -    | Time  |      | S   | ourc | e    |            |     | Des   | tinati | on       |      | I   | Prote | bc L | .ength | n Ir | nfo  |      |       |      |     |     |     |     |       |      |            |
| 4  | 4    | 65.8  | 313. | . 1 | 92.  | 168  | .1.        | 103 | 192   | 2.16   | 8.1      | .10  | 4   | тср   |      | 5      | 43   | 6956 | j →  | 22    | [F]  | [N] | Se  | q=1 | Wi  | .n=10 | 924  | Len=0      |
| 4  | 1    | 65.9  | 914  | . 1 | 92.  | 168  | .1.        | 103 | 192   | 2.16   | 8.1      | .10  | 4   | TCP   | 2    | 5      | 43   | 6957 | 7 →  | 22    | [F]  | IN] | Se  | q=1 | Wi  | .n=10 | 924  | Len=0      |
|    |      |       |      |     | w    | ٨    | <i>L</i> d | LC. | en a  | щe     | <u>u</u> | uus  | 110 | 201   | IJ   |        |      |      |      |       |      |     |     |     |     |       |      |            |
| F  | ram  | ne 4  | 18:  | 54  | by   | tes  | on         | wi  | re    | (432   | bi       | ts)  | , 5 | 4 b   | yte  | es ca  | apt  | ured | 1 (4 | 432   | bit  | ts) | on  | in  | ter | face  | e 0  |            |
| E  | the  | erne  | tΙ   | I,  | Src  | : v  | mwa        | re_ | d1:   | Be:0   | с (      | 00:  | 0c: | 29:   | d1:  | 8e:0   | 9c)  | , Ds | st:  | ٧m    | vare | e_6 | b:7 | 1:a | 7 ( | 00:0  | Dc:  | 29:6b:71:  |
| I  | nte  | erne  | tΡ   | rot | осо  | 1 V  | ers        | ion | 4,    | Src    | : 1      | 92.  | 168 | .1.   | 103  | 3, Ds  | st:  | 192  | 2.10 | 68.3  | 1.10 | 94  |     |     |     |       |      |            |
| Т  | ran  | ısmi  | ssi  | on  | Con  | tro  | 1 P        | rot | oco.  | 1, S   | rc       | Por  | tin | 369   | 56,  | Dst    | :Р   | ort: | 22   | 2, 9  | Seq  | : 1 | , L | en: | 0   |       |      |            |
|    |      |       |      |     | U    | λĽ   | U.         | ШĊ  | Lel 1 | ալ     | 15       | J.U. | gle | SH    | U    |        |      |      |      |       |      |     |     |     |     |       |      |            |
| 00 | 00   | 00    | 0c   | 29  | 6b   | 71   | a7         | 00  | 0c    | 29     | d1       | 8e   | 0c  | 08    | 00   | 45     | 00   |      | .)k  | q     | . )  |     | E   | Ξ.  |     |       |      |            |
| 01 | 10   | 00    | 28   | 6f  | 28   | 00   | 00         | 35  | 06    | 92     | 88       | c0   | a8  | 01    | 67   | сø     | a8   |      | (0(  | 5     |      |     | .g. |     |     |       |      |            |
| 02 | 20   | 01    | 68   | 90  | 5c   | 00   | 16         | 60  | a9    | 71     | a7       | 00   | 00  | 00    | 00   | 50     | 01   |      | h.\  | · · ` | . q  |     | F   | ·.  |     |       |      |            |
| 03 | 30   | 04    | 00   | c5  | 00   | 00   | 00         |     |       |        |          |      |     |       |      |        |      | •    |      | ••    |      |     |     |     |     |       |      |            |

#### • Analysis TCP Header Details

Now lets Identifying the source and destination port along with Flag hex value (**TCP-FIN**) is similar as above.

| Bits Color         Light Brown         Yellow         Green           TCP – FIN Packets Hex value         90 5c         00 16         01           Desimal Value         26056         22         1 | TCP Header                | Source Port | Destination Port | Hex value of Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|------------------|-------------------|
| TCP-FIN Packets Hex value     90 5c     00 16     01       Desimal Value     36056     32     1                                                                                                     | Bits Color                | Light Brown | Yellow           | Green             |
| Desimal Value 26056 22                                                                                                                                                                              | TCP-FIN Packets Hex value | 90 5c       | 0016             | 01 falaafa        |
| Decimal value 30550 22 0 1                                                                                                                                                                          | Decimal Value             | 36956       | 22               | hararann          |

So through given below image and with help of a table, we came to know that here TCP-FIN packet is used for sending connection request on Port 22.

**Conclusion:** So as declared above regarding the working of NMAP FIN scan, we had obtained the hex value for every packet in the same sequence.

Obtaining the hex value for every packet in such sequence gives an indication to the Penetration tester that Someone has Choose NMAP FIN scan for Network enumeration.

NOTE: If you found 1st FIN packet (0x01) and 2<sup>nd</sup> RST packet (0x04) then indicates "Closed Port" on the targeted network.

~



## Nmap NULL Scan

Here we are going with TCP Null scan to enumerate "OPEN" state of any specific port in any Linux based system.

```
nmap -sN -p22 192.168.1.104
```

Working of Null Scan for open port: Send 2 packets of TCP-NONE on a specific port

Here NMAP used NONE flag (No flag) to initiate TCP communication and bit of each flag is set "0" instead of following three-way handshake communication.



#### Step to Identify NMAP Null Scan

Collect IP Header Details for Protocol Version

渿

For reading data of Ethernet head visit to our previous article "Network packet forensic".

#### NOTE: Ether type for IPv4 is 0x0800

Try to collect the following details as given below:

- 1. Ip header length 20 Bytes (5bits\*4=20 bytes)
- 2. Protocol (06 for TCP)
- 3. Source IP
- 4. Destination IP

It is quite similar to NMAP above Scan and using the given table you can study these values to obtain their original value.

| IP header      | Header length | Protocol | Source IP     | Destination IP |
|----------------|---------------|----------|---------------|----------------|
| (20 bytes) 🛛 🕦 | ww.hack       | ngartie  | es:in         |                |
| Bits Color     | Brown         | Red      | Pink          | Orange         |
| Hex Value      | 5             | 06       | C0.a8.01.67   | C0.a8.01.68    |
| Decimal value  | 5             | 6        | 192.168.1.103 | 192.168.1.104  |

| ip.a       | ddr =        | = 19         | 92.1       | 68.1       | .104         | ļ          |            |            |              |            |             |           |            |      |        |            |            |              |              |            |                                                                                                                                                                           |            |       | X            |            | -            | Expr | ession       |
|------------|--------------|--------------|------------|------------|--------------|------------|------------|------------|--------------|------------|-------------|-----------|------------|------|--------|------------|------------|--------------|--------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------|------------|--------------|------|--------------|
|            | Time         |              | S          | ourc       | e            |            |            | Des        | tinati       | on         |             | 1         | Proto      | oc L | engtl  | h Ir       | nfo        |              |              |            |                                                                                                                                                                           |            |       |              |            |              |      |              |
| 7          | 3.3          | 887.<br>892. | . 1        | 92<br>92   | $168 \\ 168$ | 40         | 103<br>103 | 192<br>192 | 2.16         | 8.1<br>8.1 | .10         | 4         | TCP<br>TCP | 0    | 5<br>5 | 44         | 491<br>491 | .8 -<br>.9 - | + 22<br>+ 22 | 2 [<br>2 [ | <no<br><no< td=""><td>ne&gt;<br/>ne&gt;</td><td>] 5</td><td>Seq=<br/>Seq=</td><td>1 \<br/>1 \</td><td>Win=<br/>Win=</td><td>1024</td><td>Len:<br/>Len:</td></no<></no<br> | ne><br>ne> | ] 5   | Seq=<br>Seq= | 1 \<br>1 \ | Win=<br>Win= | 1024 | Len:<br>Len: |
| Era        | mo 7         | . 5          | 4 h        | vto        | c 0          | n          | iro        | (1)        | 22 h         | ite        | 1           | 54        | byt        | 00   | can    | +          | od         | ( 13         | 22 1         | ,it        | c )                                                                                                                                                                       | 00.        | int   | orf          | 200        | 0.0          |      | Þ            |
| Eth        | erne         | t I          | Ξ,         | Src        | : V          | mwa        | re_        | d1:        | 32 D<br>Be:0 | c (        | 00:         | 0c:       | 29:        | d1:  | 8e:    | 0c)        | , D        | (4)<br>st    | : Vn         | nwa        | s)<br>re_                                                                                                                                                                 | 6b:        | 71:   | a7           | (0)        | 0:0c         | :29: | 6b:71        |
| Int<br>Tra | erne<br>nsmi | t P<br>.ssi  | rot<br>.on | oco<br>Con | l V<br>tro   | ers<br>l P | ion<br>rot | 4,<br>000  | Src          | : 1<br>rc  | .92.<br>Por | 168<br>t: | 449        | 103  | , D    | st:<br>t P | 19<br>ort  | 2.1          | 168.<br>22.  | .1.<br>Se  | 104<br>a:                                                                                                                                                                 | 1. I       | Ler   | n: 0         |            |              |      |              |
|            |              |              |            |            | u            |            | uuc        |            | GN           | ų          | 1.1         | iar       | 919        | сл.  |        |            |            |              |              |            |                                                                                                                                                                           |            |       |              |            |              |      |              |
| 000        | 00           | 0c           | 29         | 6b         | 71           | a7         | 00         | 0c         | 29           | d1         | 8e          | 0c        | 08         | 00   | 45     | 00         |            | )            | kq.          |            | ).                                                                                                                                                                        |            | Ε.    |              |            |              |      |              |
| 910        | 00           | 28           | e9         | 26         | 00           | 00         | 31<br>h1   | 06         | 10           | 8a         | C0          | a8        | 01         | 67   | C0     | a8         |            | . ( .        | &            | 1.         | •••                                                                                                                                                                       | g          | <br>D |              |            |              |      |              |
| 930        | 04           | 00           | df         | 70<br>31   | 00           | 00         | DT         | 04         | е1           | 01         | 00          | 00        | 00         | 00   | 50     | 00         |            |              | v<br>1       | •••        | •••                                                                                                                                                                       |            | г.    |              |            |              |      |              |

#### • Analysis TCP Header Details

Now lets Identifying the source and destination port along with Flag hex value (**TCP-NONE**) is similar as above.

| TCP Header                   | Source Port | Destination Port | Hex value of Flag |
|------------------------------|-------------|------------------|-------------------|
| Bits Color                   | Light Brown | Yellow           | Green             |
| TCP - NONE Packets Hex value | Af76        | 00 16            | 0x00              |
| Decimal Value                | 44918       | 22               | 0                 |

So through given below image and with help of a table, we come to know that here TC+-

≈

NONE packet is used for sending connection request on Port 22.

**Conclusion:** So as stated above regarding the working of NMAP NONE scan, we had obtained the hex value for every packet in the same sequence.

Obtaining the hex value for every packet in such sequence gives an indication to the Penetration tester that someone has Chosen NMAP NONE scan for Network enumeration.

## NOTE: If you found 1st NONE packet (0x00) and 2<sup>nd</sup> RST packet (0x04) then indicates "Closed Port" on the target network.

```
Transmission Control Protocol, Src Port: 44918, Dst Port: 22, Seq: 1, Len: 0
  Source Port: 44918
  Destination Port: 22
  [Stream index: 0]
  [TCP Segment Len: 0]
                        (relative sequence number)
  Sequence number: 1
  Acknowledgment number: 0
  0101 .... = Header Length: 20 bytes (5)
Flags: 0x000 (<None>)
  Window size value: 1024
  [Calculated window size: 1024]
  [Window size scaling factor: -1 (unknown)]
  Checksum: 0xdf31 [unverified]
  [Checksum Status: Unverified]
  Urgent pointer: 0
```

| 000 | 00 | 0c | 29 | 6b | 71 | a7 | 00 | 0c | 29 | d1 | 8e | 0c | 08 | 00 | 45 | 00 | )kq ) | E. |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|----|
| 010 | 00 | 28 | e9 | 26 | 00 | 00 | 31 | 06 | 1c | 8a | c0 | a8 | 01 | 67 | c0 | a8 | .(.&1 | .g |
| 920 | 01 | 68 | af | 76 | 00 | 16 | b1 | 84 | e7 | 81 | 00 | 00 | 00 | 00 | 50 | 00 | .h.v  | P. |
| 030 | 04 | 00 | df | 31 | 00 | 00 |    |    |    |    |    |    |    |    |    |    | 1     |    |

## Nmap XMAS Scan

Here we are going with XMAS scan to enumerate "OPEN" state of any specific port in any Linux based system

nmap -sX -p22 192.168.1.104

Working of XMAS Scan for open port: Send **2 packets of TCP** Flags in a combination of **FIN**, **PSH**, **URG** on the specific port.

Here NMAP used 3 TCP flags (FIN, PSH, and URG) to initiate TCP communication and each flag is set "1" instead of following three-way handshake communications.

| <pre>root@kali:~# nmap -s&gt;</pre>                                  | (-p22 192.168.1.104                                                      |
|----------------------------------------------------------------------|--------------------------------------------------------------------------|
| Starting Nmap 7.60 (<br>Nmap scan report for<br>Host is up (0.00020s | https://nmap.org ) at 2018-01-09 08:43 EST<br>192.168.1.104<br>latency). |
| PORT STATE                                                           | SERVICE                                                                  |
| 22/tcp <mark>open</mark>  filtered                                   | ssh                                                                      |
| MAC Address: 00:0C:29                                                | 9:6B:71:A7 (VMware)                                                      |
| Nmap done: 1 IP addre                                                | ess (1 host up) scanned in 0.43 seconds                                  |

#### Step to Identify NMAP XMAS Scan

• Collect IP Header Details for Protocol Version

For reading data of Ethernet head visit to our previous article "Network packet forensic".

#### NOTE: Ether type for IPv4 is 0x0800

Try to collect the following details as given below:

- 1. Ip header length 20 Bytes (5bits\*4=20 bytes)
- 2. Protocol (06 for TCP)
- 3. Source IP
- 4. Destination IP

It is quite similar to NMAP above Scan and using the given table you can study these values to obtain their original value.

| IP header      | Header length | Protocol | Source IP     | Destination IP |  |  |
|----------------|---------------|----------|---------------|----------------|--|--|
| (20 bytes) 🛛 🚺 | ww.hack       | ingartic | es:in         |                |  |  |
| Bits Color     | Brown         | Red      | Pink          | Orange         |  |  |
| Hex Value      | 5             | 06       | C0.a8.01.67   | C0.a8.01.68    |  |  |
| Decimal value  | 5             | 6        | 192.168.1.103 | 192.168.1.104  |  |  |

| ip.ac                                 | ddr ==                                      | = 19                     | 2.1                                 | 68.1                                  | .104                                  | ł                        |                                           |                                         |                             |                          |                         |                        |                                       |                                      |                             |                          |                             |                        |                     |                                |                             |                       |               | ×∣→              |
|---------------------------------------|---------------------------------------------|--------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--------------------------|-------------------------------------------|-----------------------------------------|-----------------------------|--------------------------|-------------------------|------------------------|---------------------------------------|--------------------------------------|-----------------------------|--------------------------|-----------------------------|------------------------|---------------------|--------------------------------|-----------------------------|-----------------------|---------------|------------------|
| ).                                    | Time                                        |                          | S                                   | ourc                                  | e                                     |                          |                                           | Dest                                    | tinati                      | ion                      |                         | 1                      | Prote                                 | oc Le                                | ength                       | n In                     | fo                          |                        |                     |                                |                             |                       |               |                  |
| 9<br>10                               | 2.78                                        | 3 <mark>62</mark><br>371 | . 1                                 | 92.<br>92.                            | 168<br>168                            | .1.<br>.1.               | 103<br>103                                | 192<br>192                              | .16                         | 8.1<br>8.1               | .10                     | 4<br>4                 | TCP<br>TCP                            |                                      | 5<br>5                      | 45<br>45                 | 2469<br>2470                | ) →<br>  →             | 22<br>22            | [FI                            | N,<br>N,                    | PSH,<br>PSH,          | U             | RG] S            |
|                                       |                                             |                          |                                     |                                       |                                       |                          | Ŵ                                         | NW                                      | <u>Hit</u>                  | <u>i</u>                 | КП                      | Q                      | Jit                                   | C                                    | es                          | Tr                       |                             |                        |                     |                                |                             |                       |               |                  |
| Fra<br>Eth<br>Int<br><mark>Tra</mark> | me 9<br>erne<br>erne<br><mark>nsmi</mark> : | : 5<br>t I<br>t P<br>ssi | 4 b<br>I,<br>rot<br><mark>on</mark> | yte<br>Src<br>oco<br><mark>Con</mark> | s o<br>: V<br>l V<br><mark>tro</mark> | n w<br>mwa<br>ers<br>l P | /ire_<br>ire_<br>ion<br><mark>Prot</mark> | (43<br>d1:8<br>4,<br><mark>oco</mark> ] | 32 b<br>3e:0<br>Src<br>., S | its<br>c (<br>: 1<br>crc | ),<br>00:<br>92.<br>Por | 54<br>0c:<br>168<br>t: | byt<br>29:<br>.1.<br><mark>524</mark> | es<br>d1:<br>103<br><mark>69,</mark> | capt<br>8e:0<br>, Ds<br>Dst | tur<br>0c)<br>st:<br>t P | ed (<br>, Ds<br>192<br>ort: | 432<br>t:<br>.16<br>22 | 2 bi<br>Vmv<br>88.1 | its)<br>vare_<br>L.104<br>Seq: | on<br>_6b<br>4<br><b>1,</b> | n int<br>0:71:<br>Len | er<br>a7<br>: | face<br>(00<br>0 |
| 000<br>010<br>020<br>030              | 00<br>00<br>01<br>04                        | 0c<br>28<br>68<br>00     | 29<br>b5<br>cc<br>f3                | 6b<br>7e<br>f5<br>82                  | 71<br>00<br>00<br>00                  | a7<br>00<br>16<br>00     | 00<br>34<br>78                            | 0c<br>06<br>66                          | 29<br>4d<br>ee              | d1<br>32<br>a6           | 8e<br>c0<br>00          | 0c<br>a8<br>00         | 08<br>01<br>00                        | 00<br>67<br>00                       | 4 <u>5</u><br>c0<br>50      | 00<br>a8<br>29           | . <br>.                     | .)k<br>(.~<br>1        | q<br>4<br>x         | . ).<br>. M2<br>f              | <br>                        | E.<br>.g<br>P)        |               |                  |

#### • Analysis TCP Header Details

Now lets Identifying the source and destination port along with Flag hex value (**TCP-XMAS**) is similar as above.

| TCP Header                          | Source Port | Destination Port | Hex value of Flag |
|-------------------------------------|-------------|------------------|-------------------|
| Bits Color                          | Light Brown | Yellow           | Green             |
| TCP -{FIN,PSH,URG}Packets Hex value | Ccf5        | 00 16            | 0x29              |
| Decimal Value                       | 52469       | 22               | 41                |

So through given below image and with help of the table, we come to know that here TCP flags {FIN, PSH, URG} packet is used for sending connection request on Port 22.

**Conclusion!** So as stated above regarding the working of NMAP XMAS scan, we had obtained the hex value for every packet in the same sequence.

Obtaining the hex value for every packet in such sequence gives the indication to the Penetration tester that someone has Choose NMAP XMAS scanned for Network enumeration.

#### NOTE:

• If you found 1st {FIN, PSH, URG} packet (0x29) and 2nd RST packet (0x04) then indicate "Closed Port" on targeted network.

• NMAP FIN, NMAP NULL, and NMAP XMAS scan are only applicable on Linux based system

\*

. . . . . .



## Nmap UDP Scan

Here we are going with XMAS scan to enumerate state of any specific port in any Linux based system

```
nmap -sU -p68 192.168.1.104
```

Working of XMAS Scan for open port: Send 2 packets of UDP on a specific port

It is quite different from the TCP communication process because here no Flag is used for establishing a connection or initiate a connection request with the target's network.



#### Step to Identify NMAP UDP Scan

Collect IP Header Details for Protocol Version

渿

For reading data of Ethernet head visit to our previous article "Network packet forensic".

#### NOTE: Ether type for IPv4 is 0x0800

Try to collect the following details as given below:

- 1. Ip header length 20 Bytes (5 bits\*4=20 bytes)
- 2. Protocol (11 for UDP)
- 3. Source IP
- 4. Destination IP

It is quite similar as NMAP above Scan as "IP header" and "Ethernet header" information will be same either is TCP communication or UDP communication and using the given table you can study these values to obtain their original value.

| IP header     | Header length | Protocol | Source IP     | Destination IP |
|---------------|---------------|----------|---------------|----------------|
| (20 bytes)    | www.had       | kingarti | des in        |                |
| Bits Color    | Brown         | Red      | Pink          | Orange         |
| Hex Value     | 5             | 11       | C0.a8.01.67   | C0.a8.01.68    |
| Decimal value | 5             | 17       | 192.168.1.103 | 192.168.1.104  |

Basically, 11 is hex value use for UDP protocol which is quite useful in identify NMAP UDP scan from remanding scanning method.

```
      7 1.3272...
      192.168.1.103
      192.168.1.104
      UDP
      42 33397 → 68 Len=0

      8 1.4279...
      192.168.1.103
      192.168.1.104
      UDP
      42 33398 → 68 Len=0
```

Frame 7: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on inter Ethernet II, Src: Vmware\_d1:8e:0c (00:0c:29:d1:8e:0c), Dst: Vmware\_6b:71:a7 Internet Protocol Version 4, Src: 192.168.1.103, Dst: 192.168.1.104 User Datagram Protocol, Src Port: 33397, Dst Port: 68

| 000 | 00 | 0c | 29 | 6b | 71 | a7 | 00 | Θc | 29 | d1 | 8e | 0c | 08 | 00 | 45 | 00 | )kq    | )E. |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--------|-----|
| 910 | 00 | 1c | 15 | d3 | 00 | 00 | 2c | 11 | f4 | de | сO | a8 | 01 | 67 | c0 | a8 | , .    | g   |
| 020 | 01 | 68 | 82 | 75 | 00 | 44 | 00 | 08 | f9 | 04 |    |    |    |    |    |    | .h.u.D |     |

1. Analysis UDP Header Details

Now lets Identifying the source and destination port an as done above in TCP Scanning.

| TCP Header            | Source Port | Destination Port |
|-----------------------|-------------|------------------|
| Bits Color            | Light Brown | Yellow           |
| UDP Packets Hex value | 82 75       | 00 44            |
| Decimal Value         | 3397        | 68               |

**Conclusion!** Obtaining the hex value for every packet in such sequence gives the indication to the Penetration tester that Someone has Choose NMAP UDP scan for Network enumeration.

NOTE: If you found 1st UDP packet and 2<sup>nd</sup> UDP with ICMP Message Port is unreachable then indicates "Closed Port" on the target network.

| User | <sup>-</sup> Da      | tag      | ram  | Pr   | oto          | col | , Sr | c Port | : 3 | 3339 | 7,  | Dst | Po | rt: | 68 |                      |
|------|----------------------|----------|------|------|--------------|-----|------|--------|-----|------|-----|-----|----|-----|----|----------------------|
| S    | Source Port: 33397   |          |      |      |              |     |      |        |     |      |     |     |    |     |    |                      |
| De   | Destination Port: 68 |          |      |      |              |     |      |        |     |      |     |     |    |     |    |                      |
| Le   | engt                 | h:       | 8    | 777  | <b>A'</b> 'A |     |      | ાણન    | JU  | ાલાર | 151 | JU  |    |     |    |                      |
| Cl   | neck                 | sun      | 1: C | xf9  | 04           | [un | veri | fied]  |     |      |     |     |    |     |    |                      |
| [(   | Chec                 | ksι      | ım S | stat | us:          | Un  | veri | fied]  |     |      |     |     |    |     |    |                      |
| [\$  | Stre                 | am       | ind  | lex: | 1]           |     |      |        |     |      |     |     |    |     |    |                      |
|      |                      |          |      |      |              |     |      |        |     |      |     |     |    |     |    |                      |
| 0000 | 00                   | 0c       | 29   | 6b   | 71           | a7  | 00 0 | c 29   | d1  | 8e   | 0c  | 08  | 00 | 45  | 00 | )kq )E.              |
| 010  | ~ ~                  | 4 -      | 1 5  | 42   | 00           | 00  | 2c 1 | 1 f4   | de  | C0   | a8  | 01  | 67 | C0  | a8 | n                    |
| DIO  | 00                   | TC       | 12   | us   | 00           | 00  | 20 3 | ± 14   |     |      |     |     |    |     |    | ·· <u>···</u> ···y·· |
| 020  | 00<br>01             | 1C<br>68 | 82   | 75   | <u>90</u>    | 44  | 00 0 | 8 f9   | 04  |      |     |     |    |     | uo | .h <mark>.u.D</mark> |

Author: Yashika Dhir is a passionate Researcher and Technical Writer at Hacking Articles. She is a hacking enthusiast. contact here



# 3 thoughts on "Forensic Investigation of Nmap Scan using Wireshark"



Srinivas August 8, 2019 at 10:14 am

Nice Article

\*



### <u>David Mata</u>

October 28, 2019 at 8:05 pm

I am a developer and I always try to use Wireshark to solve problems (related with networking) and with your articles I am going to be able to solve problems that I couln't before. This articles are just great.



#### Peter

March 6, 2020 at 3:50 pm

Hi Raj,

Love the article, really great summary and explanation. I often come back to read it.

I just have one question: In 3rd picture in section "Default NMAP Scan (Stealth Scan)" it shows the same Wireshark output as in the 3rd picture in section "Nmap TCP Scan". In the section "Default NMAP Scan (Stealth Scan)" the Wireshark screenshot should not include an ACK package (it should only be 3 packages in total, not 4 as in the "Nmap TCP Scan").

Not sure if I expressed it clearly, but I hope you know what I mean.

Cheers, Peter

Comments are closed.

Search ...

Search





## Join Our Training Program







#### Categories

\*

Cryptography & Stegnography

CTF Challenges

**Cyber Forensics** 

Database Hacking

Footprinting

Hacking Tools

Kali Linux

Nmap

Others

Password Cracking

**Penetration Testing** 

Pentest Lab Setup

**Privilege Escalation** 

**Red Teaming** 

Social Engineering Toolkit

Uncategorized

Website Hacking

Window Password Hacking

Wireless Hacking

Wireless Penetration Testing

## Archives

Select Month

## You may like

≈

\_

• -

• • -

-

\_

—

- -

\*