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Abstract—We explore the risk that network attackers can
exploit unauthenticated Network Time Protocol (NTP) traffic to
alter the time on client systems. We first discuss how an on-
path attacker, that hijacks traffic to an NTP server, can quickly
shift time on the server’s clients. Then, we present a extremely
low-rate (single packet) denial-of-service attack that an off-path
attacker, located anywhere on the network, can use to disable NTP
clock synchronization on a client. Next, we show how an off-path
attacker can exploit IPv4 packet fragmentation to dramatically
shift time on a client. We discuss the implications on these
attacks on other core Internet protocols, quantify their attack
surface using Internet measurements, and suggest a few simple
countermeasures that can improve the security of NTP.

I. INTRODUCTION

NTP [41] is one of the Internet’s oldest protocols, designed
to synchronize time between computer systems communicat-
ing over unreliable variable-latency network paths. NTP has
recently received some attention from security researchers due
to software-implementation flaws [48], [56], and its potential
to act as an amplifier for distributed denial of service (DDoS)
attacks [13], [64]. However, the community still lacks visibility
into the robustness of the NTP ecosystem itself, as well as
the integrity of the timing information transmitted by NTP.
These issues are particularly important because time is a
fundamental building block for computing applications, and
is heavily utilized by many cryptographic protocols.

NTP most commonly operates in an hierarchical client-
server fashion. Clients send queries to solicit timing infor-
mation from a set of preconfigured servers that usually re-
main static over time. While NTP supports both symmetric
and asymmetric cryptographic authentication [21], in practice,
these modes of operation are rarely used (Section III).

Our goal is therefore to explore attacks on unauthenticated
NTP that are possible within the NTP protocol specifica-
tion [41]. We consider both (1) on-path attacks, where the
attacker occupies a privileged position on the path between
NTP client and one of its servers, or hijacks (with e.g.,
DNS [24], [25] or BGP [14], [19], [50]) traffic to the server,
and (2) off-path attacks, where the attacker can be anywhere
on the network and does not observe the traffic between client
and any of its servers. This paper considers the following:

Implications (Section II). We consider a few implications of
attacks on NTP, highlighting protocols and applications whose
correctness and security relies on the correctness of local
clocks. We discuss why some applications (e.g., authentication,
bitcoin, caching) can fail if time is shifted by just hours or
days, while others (e.g., TLS certificates, DNSSEC) fail when
time is shifted by months or years.

Dramatic time steps by on-path attackers (Sections IV). We
discuss various techniques that an on-path attacker who inter-
cepts traffic to an NTP server can use to shift time on its clients
by hours or even years. Our attacks exploit NTP’s behavior
upon initialization, as well as the fact than an on-path attacker
can easily determine exactly when an ntpd client is initializing.
We also present “small-step-big-step” attack that stealthily
shifts client clocks when clients are unlikely to notice; this
behavior has been captured in CVE-2015-5300.

Off-path denial-of-service attack (Section V-C). We show how
an off-path attacker can disable NTP at a victim client by
exploiting NTP’s rate-limiting mechanism, the Kiss-o’-Death
(KoD) packet. Our attacker need only spoof a single KoD
packet from each of the client’s preconfigured servers. The
client stops querying its servers and is unable to update its local
clock. The current NTP reference implementation is vulnerable
to this attack, which is described in CVE-2015-7704. An off-
path attacker that uses standard networking scanning tools
(e.g., zmap [16]) to spoof KoD packets can launch this attack
on most NTP clients in the Internet within a few hours.

Time steps by off-path attackers. Next, we consider off-path
attackers that step time on victim NTP clients:

1. Pinning to bad timekeepers (Section V-D). We first consider
an off-path attackers that uses spoofed KoD packets to force
clients to synchronize to malfunctioning servers that provide
incorrect time; we find that NTP is pretty good at preventing
this type of attack, although it succeeds in certain situations.

2. Fragmentation attack (Section VI). Then we show how
NTP’s interaction with lower layer protocols (ICMP, IPv4)
can be exploited in a new off-path IPv4 fragmentation attack
that shifts time on a victim client. We explain why NTP’s
clock discipline algorithms require our attack to craft a stream
of self-consistent packets (rather than just one packet, as
in [24], [25]), and demonstrate its feasibility with a proof-
of-concept implementation. This attack, which has a small but
non-negligible attack surface, exploits certain IPv4 fragmenta-
tion policies used by the server and client operating systems
(Section VI-E), rather than specific issues with NTP.

Network measurements (Sections III-B,V-F,VI-G-VI-H). The
last measurement studies of the NTP ecosystem were con-
ducted in 1999 [43] and 2006 [46], while a more recent
study [13] focused on NTP DoS amplification attacks. We
study the integrity of the NTP ecosystem using data from
the openNTPproject [37], and new network-wide scans (Sec-
tion III-B). We identify bad timekeepers that could be exploited
by off-path attacker (Section V-F), and servers that are vulner-
able to our fragmentation attack (Sections VI-G-VI-H).



To attack... change time by ...
TLS Certs years
HSTS (see [59]) a year
DNSSEC months
DNS Caches days

To attack... change time by ...
Routing (RPKI) days
Bitcoin (see [12]) hours
API authentication minutes
Kerberos minutes

TABLE I. ATTACKING VARIOUS APPLICATIONS WITH NTP.

Recommendations and disclosure (Sections V-G,VI-I,VIII).
Disclosure of these results began on August 20, 2015, and
the Network Time Foundation, NTPsec, Redhat’s security
team, and Cisco quickly responded with patches to their NTP
implementations. We have also worked with the openNTP-
project to provide a resource that that operators can use
to measure their servers’ vulnerability to our fragmentation
attacks.1 Our recommendations for hardening NTP are in
Sections IV-C,V-G,VI-I and summarized in Section VIII.

II. WHY TIME MATTERS:
IMPLICATIONS OF ATTACKS ON NTP

NTP lurks in the background of many systems; when NTP
fails on the system, multiple applications on the system can
fail, all at the same time. Such failures have happened. On
November 19, 2012 [8], for example, two important NTP
(stratum 1) servers, tick.usno.navy.mil and tock.usno.navy.mil,
went back in time by about 12 years, causing outages at a
variety of devices including Active Directory (AD) authenti-
cation servers, PBXs and routers [45]. Exploits of individual
NTP clients also serve as a building block for other attacks,
as summarized in Table I. Consider the following:

TLS Certificates. TLS certificates are used to establish secure
encrypted and authenticated connections. An NTP attacker
that sends a client back in time could cause the host to
accept certificates that the attacker fraudulently issued (that
allow the attacker to decrypt the connection), and have since
been revoked2. (For example, the client can be rolled back
to mid-2014, when > 100K certificates were revoked due to
heartbleed [68].) Alternatively, an attacker can send the client
back to a time when a certificate for a cryptographically-weak
key was still valid. (For example, to 2008, when a bug in
Debian OpenSSL caused thousands of certificates to be issued
for keys with only 15-17 bits of entropy [17].) Moreover,
most browsers today accept (non-root) certificates for 1024-
bit RSA keys, even though sources speculate that they can be
cracked by well-funded adversaries [7]; thus, even a domain
that revokes its old 1024-bit RSA certificates (or lets them
expire) is vulnerable to cryptanalytic attacks when its clients
are rolled back to a time when these certificates were valid.

DNSSEC. DNSSEC provides cryptographic authentication of
the Domain Name System (DNS) data. NTP can be used to at-
tack a DNS resolver that performs ‘strict’ DNSSEC validation,
i.e., fails to return responses to queries that fail cryptographic
DNSSEC validation. An NTP attack that sends a resolver
forwards in time will cause all timestamps on DNSSEC

1https://www.cs.bu.edu/∼goldbe/NTPattack.html
2The attacker must also circumvent certificate revocation mechanisms, but

several authors [26], [32], [47] point out that this is relatively easy to do in
various settings. For instance, several major browsers rely on OCSP [57] to
check if a certificate was revoked, and default to “soft-fail”, i.e., accepting the
certificate as valid, when they cannot connect to the OCSP server. NTP-based
cache-flushing could also be useful for this purpose, by causing the client to
‘forget’ any old certificate revocation lists (CRLs) that it may have seen in
the past; see also our discussion of routing attacks.

cryptographic keys and signatures to expire (the recommended
lifetime for zone-signing keys in DNSSEC is 1 month [31]);
the resolver and all its clients thus lose connectivity to any
domain secured with DNSSEC. Alternatively, an NTP attack
that sends a resolver back in time allows for DNSSEC replay
attacks; the attacker, for example, roll to a time in which
a certain DNSSEC record for a domain name did not exist,
causing the resolver to lose connectivity to that domain. Since
the recommended lifetime for DNSSEC signatures is no more
30 days [31], this attack would need to send the resolver back
time by a month (or more, if the time in which the DNSSEC
record did not exist was further in the past).

Cache-flushing attacks. NTP can also be used for cache
flushing. The DNS, for example, relies heavily on caching to
minimize the number of DNS queries a resolver makes to a
public nameserver, thus limiting load on the network. DNS
cache entries typically live for around 24 hours, so rolling a
resolver forward in time by a day would cause most of its
cache entries to expire [27], [42]. A widespread NTP failure
(like the one in November 2012) could cause multiple resolvers
to flush their caches all at once, simultaneously flooding the
network with DNS queries.

Interdomain routing. NTP can be used to exploit the Resource
Public Key Infrastructure (RPKI) [34], a new infrastructure
for securing routing with BGP. The RPKI uses Route Origin
Authorizations (ROAs) to cryptographically authenticate the
allocation of IP address blocks to networks. ROAs prevent
hijackers from announcing routes to IP addresses that are not
allocated to their networks. If a valid ROA is missing, a ‘rely-
ing party’ (that relies on the RPKI to make routing decisions)
can lose connectivity to the IPs in the missing ROA.3 As such,
relying parties must always download a complete set of valid
ROAs; to do this, they verify that they have downloaded all
the files listed in cryptographically-signed ‘manifest’ files. To
prevent the relying party from rolling back to a stale manifest
that might be missing a ROA, manifests have monotonically-
increasing ‘manifest-numbers’, and typically expire within a
day [23]. NTP attacks, however, can first roll the relying party
forward in time, flushing its cache and causing it to ‘forget’ its
current manifest-number, and then roll the relying party back
in time, so that it accepts a stale manifest as valid.

Bitcoin. Bitcoin is a digital currency that allows a de-
centralized network of node to arrive at a consensus on a
distributed public ledger of transactions, aka “the blockchain”.
The blockchain consists of timestamped “blocks”; bitcoin
nodes use computational proofs-of-work to add blocks to the
blockchain. Because blocks should be added to the blockchain
according to their validity interval (about 2 hours), an NTP
attacker can trick a victim into rejecting a legitimate block,
or into wasting computational power on proofs-of-work for a
stale block [12].

Authentication. Various services (e.g., Amazon S3 [4], the
DropBox Core API [15]) expose APIs that require authentica-
tion each time an application queries them. To prevent replay
attacks, queries require a timestamp that is within some short
window of the server’s local time, see e.g., [22, Sec 3.3];
Amazon S3, for example, uses a 15-minute window. Moreover,

3See [11, Side Effect 6]: the relying party loses connectivity if it uses ‘drop
invalid’ routing policy [11, Sec. 5], and the missing ROA has ‘covering ROA’.
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authentication with Kerberos requires clients to present freshly
timestamped (typically within minutes) tickets to a server
before being granted them access [30]. Thus, by changing a
application’s or server’s time, an NTP attacker can deny service
or launch replay attacks on various authentication services.

III. THE NTP ECOSYSTEM

We start with background on the NTP protocol, and use a
measurement study to discuss its structure and topology. While
NTP is one of the Internet’s oldest protocols, it has evolved
in more fluid fashion than other protocols like DNS or BGP.
Thus, while NTP is described in RFC 5905 [41], practically
speaking, the protocol is determined by the NTP reference
implementation ntpd, which has changed frequently over the
last decades [64]. (For example, root distance Λ (equation (4))
is a fundamental NTP parameter, but is defined differently in
RFC 5905 [41, Appendix A.5.5.2], ntpd v4.2.6 (the second
most popular version of ntpd that we saw in the wild) and
ntpd v4.2.8 (the latest version as of May 2015).)

A. Background: The NTP Protocol.

NTP most commonly operates in an hierarchical client-
server fashion.4 Clients send queries to solicit timing infor-
mation from a set of servers. This set of servers is manually
configured before the client initializes and remains static over
time. In general, the ntpd client can be configured with up to 10
servers.5 Online resources suggest configuring anywhere from
three to five servers [29], and certain OSes (e.g., MAC OS X
10.9.5) default to installing ntpd with exactly one server (i.e.,
time.apple.com). At the root of the NTP hierarchy are stratum
1 NTP servers, that provide timing information to stratum 2
client systems. Stratum 2 systems provide time to stratum 3
systems, and so on, until stratum 15. Stratums 0 and 16 indicate
that a system is unsynchronized. NTP servers with high stratum
often provide time to the Internet at large (e.g., pool.ntp.org,
tick.usno.navy.mil); our organization, for example, has stratum
2 servers that provide time to internal stratum 3 machines, and
take time from public stratum 1 servers.

Client/server communications. An NTP client and server
periodically exchange a pair of messages; the client sends the
server a mode 3 NTP query and the server responds with a
mode 4 NTP response. This two-message exchange uses the
IPv4 packet shown in Figure 1, and induces the following four
important timestamps on the mode 4 response:

T1 Origin timestamp. Client’s system time when client
sent mode 3 query.

T2 Receive timestamp. Servers’s system time when
server received mode 3 query.

T3 Transmit timestamp. Servers’s system time when
server sent mode 4 response.

T4 Destination timestamp. Client’s system time when
client received mode 4 response. (Not in packet.)

4NTP also supports less popular modes: broadcast, where a set of clients
are pre-configured to listen to a server that broadcasts timing information, and
symmetric peering, where servers (typically at the same stratum) exchange
time information. This paper just considers client-server mode.

5For example, when installing NTP in 14.04.1-Ubuntu in July 2015, the OS
defaulted to installing ntpd v4.2.6 with a five preconfigured servers.
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Fig. 1. Mode 4 NTP Packet, highlighting nonces and checksums.

The round-trip delay δ during the exchange is therefore:

δ = (T4 − T1)− (T3 − T2) (1)

Offset θ quantifies the time shift between a client’s clock
and a server’s clock. Assume that delays on the forward
(client→server) and reverse (server→client) network paths are
symmetric and equal to δ

2 . Then, the gap between the server
and client clock is T2 − (T1 + δ

2 ) for the mode 3 query, and
T3 − (T4 − δ

2 ) for the mode 4 response. Averaging these two
quantities gives:

θ = 1
2 ((T2 − T1) + (T3 − T4)) (2)

An NTP client adaptively and infrequently selects a single
server (from its set of pre-configured servers) from which
it will take time. The IPv4 address of the selected server is
recorded in the reference ID field of every NTP packet a system
sends, and the reference timestamp field records the last time
it synchronized to its reference ID. Notice that this means that
any client querying a server S2 can identify exactly which IPv4
NTP server S1 the server S2 has used for synchronization.
(Meanwhile, it is more difficult to identify IPv6 NTP servers;
because reference ID is 32-bits long, 128-bit IPv6 addresses
are first hashed and then truncated to 32-bits [41, pg 22]. To
identify an IPv6 server one would need a dictionary attack.)

A client and server will exchange anywhere between eight
to hundreds of messages before the client deigns to take time
from the server; we describe some of the algorithms used to
make this decision in Section V-E. Messages are exchanged at
infrequent polling intervals that are adaptively determined by
a complex, randomized poll process [41, Sec. 13].

Authentication. How does the client know that it’s talking to its
real NTP server and not to an attacker? While NTPv4 supports
both symmetric and asymmetric cryptographic authentication,
this is rarely used in practice. Symmetric cryptographic au-
thentication appends an MD5 hash keyed with symmetric key
k of the NTP packet contents m as MD5(k||m) [42, pg
264] to the NTP packet in Figure 1.The symmetric key must
be pre-configured manually, which makes this solution quite
cumbersome for public servers that must accept queries from
arbitrary clients. (NIST operates important public stratum 1
servers and distributes symmetric keys only to users that reg-
ister, once per year, via US mail or facsimile [3]; the US Naval
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ntpd version 4.1.1 4.2.6 4.1.0 4.2.4 4.2.0 4.2.7 4.2.8 4.2.5 4.4.2
# servers 1,984,571 702,049 216,431 132,164 100,689 38,879 35,647 20,745 15,901

TABLE II. TOP NTPD VERSIONS IN rv DATA FROM MAY 2015.

OS Unix Cisco Linux BSD Junos Sun Darwin Vmkernal Windows
# servers 1,820,957 1,602,993 835,779 38,188 12,779 6,021 3625 1994 1929

TABLE III. TOP OSES IN rv DATA FROM MAY 2015.

Office does something similar [2].) Asymmetric cryptographic
authentication is provided by the Autokey protocol, described
in RFC 5906 [21]. RFC 5906 is not a standards-track document
(it is classified as ‘Informational’), NTP clients do not request
Autokey associations by default [1], and many public NTP
servers do not support Autokey (e.g., the NIST timeservers [3],
many servers in pool.ntp.org, and the US Naval Office (USNO)
servers). In fact, a lead developer of the ntpd client wrote in
2015 [62]: “Nobody should be using autokey. Or from the other
direction, if you are using autokey you should stop using it.
If you think you need to use it please email me and tell me
your story.” For the remainder of this paper, we shall assume
that NTP messages are unauthenticated.

B. Measuring the NTP ecosystem.

We briefly discuss the status of today’s NTP ecosystem.
Our measurement study starts by discovering IP addresses of
NTP servers in the wild. We ran a zmap [16] scan of the IPv4
address space using mode 3 NTP queries on April 12-22, 2015,
obtaining mode 4 responses from 10,110,131 IPs.6 We aug-
mented our data with openNTPproject [37] data from January-
May 2015, which runs weekly scans to determine which IPs
respond to NTP control queries. (These scans are designed to
identify potential DDoS amplifiers that send large packets in
response to short control queries [13].) The openNTPproject
logs responses to NTP read variable (rv) control queries. rv
responses provide a trove of useful information including:
the server’s OS (also useful for OS fingerprinting!), its ntpd
version, its reference ID, the offset θ between its time and that
of of its reference ID, and more. Merging our zmap data with
the openNTPproject rv data gave a total of 11,728,656 IPs that
potentially run NTP servers.

OSes and clients in the wild. We use openNTPproject’s rv data
to get a sense of the OSes and ntpd clients that are present
in the wild. Importantly, the rv data is incomplete; rv queries
may be dropped by firewalls and other middleboxes. Many
NTP clients are also configured to refuse to respond to these
queries, and some rv responses omit information. (This is why
we had only 4M IPs in the rv data, while 10M IPs responded
to our mode 3 zmap scan.) Nevertheless, we get some sense of
what systems are out there by looking at the set of rv responses
from May 2015. In terms of operating systems, Table III shows
many servers running Unix, Cisco or Linux. Table IV indicates
that Linux kernels are commonly v2 (rather the more recent
v3); in fact, Linux v3.0.8 was only the 13th most popular
Linux kernel, with 17,412 servers. Meanwhile, Table II shows
that ntpd v4.1.1 (released in 2001) and v4.2.6 (released in
2008) are most popular; the current release v4.2.8 (2014) is
ranked only 8th amongst the systems we see. The bottom line

6NTP control query scans run in 2014 as part of [13]’s research found
several ‘mega-amplifiers’: NTP servers that response to a single query with
millions of responses. Our mode 3 scan also found a handful of these.

kernel 2.6.18 2.4.23 2.6.32 2.4.20 2.6.19 2.4.18 2.6.27 2.6.36 2.2.13
# servers 123,780 108,828 97,168 90,025 71,581 68,583 61,301 45,055 29550

TABLE IV. TOP LINUX KERNELS IN rv DATA FROM MAY 2015.

stratum 0,16 1 2 3 4 5 6 7-10 11-15
# servers 3,176,142 115,357 1,947,776 5,354,922 1,277,942 615,633 162,162 218,370 187,348

TABLE V. STRATUM DISTRIBUTION IN OUR DATASET.

is that there are plenty of legacy NTP systems in the wild.
As such, our lab experiments and attacks study the behavior
of two NTP’s reference implementations: ntpd v4.2.6p5 (the
second most popular version in our dataset) and ntpd v4.2.8p2
(the latest release as of May 2015).

Bad timekeepers. Next, we used our mode 3 zmap data to
determine how many bad timekeepers–servers that are unfit to
provide time—are seen in the wild. To do this, we compute
the offset θ (equation (2)) for each IP that responded to our
mode 3 queries, taking T1 from the Ethernet frame time of the
mode 3 query, T4 from the Ethernet frame time of the mode
4 query, and T2 and T3 from the mode 4 NTP payload. We
found many bad timekeepers — 1.7M had θ ≥ 10 sec, 3.2M
had stratum 0 or 16, and the union of both gives us a total
of 3.7M bad timekeepers. Under normal conditions, NTP is
great at discarding information from bad timekeepers, so it’s
unlikely that most of these servers are harming anyone other
than themselves; we look into this in Sections V-D-V-F.

Topology. Since a system’s reference ID reveals the server
from which it takes time, our scans allowed us to start building
a subset of the NTP’s hierarchical client-server topology.
However, a reference ID only provide information about one
of a client’s preconfigured servers. In an effort to learn more,
on June 28-30, 2015 we used nmap to send an additional
mode 3 NTP query to every IP that had only one parent
server in our topology; merging this with our existing data
gave us a total of 13,076,290 IPs that potentially run NTP
servers. We also wanted to learn more about the clients that
synchronize to bad timekeepers. Thus, on July 1, 2015, we
used the openNTPproject’s scanning infrastructure to send a
monlist query to each of the 1.7M servers with θ > 10
sec. While monlist responses are now deactivated by many
servers, because they have been used in DDoS amplification
attacks [13], we did obtain responses from 22,230 of these
bad timekeepers. Monlist responses are a trove of information,
listing all IPs that had recently sent NTP packets (of any mode)
to the server. Extracting only the mode 3 and 4 data from each
monlist response, and combining it with our existing data, gave
us a total of 13,099,361 potential NTP servers.

Stratum. Table V shows the distribution of stratums in our
entire dataset. Note that there is not a one-to-one mapping
between an NTP client and its stratum; because a NTP client
can be configured with servers of various stratum, the client’s
own stratum can change depending on the server it selects
for synchronization. Thus, Table V presents the ‘best’ (i.e.,
smallest) stratum for each IP in our dataset. Unsurprisingly,
stratum 3 is most common, but, like [13] we also see many
unsynchronized (stratum 0 or 16) servers.

Degree distribution. Figure 2 shows the client (i.e., child)
degree distribution of the servers in our topology. We note
that our topology is highly incomplete; it excludes information
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Fig. 2. Client-degree distribution of NTP servers in our dataset; we omit
servers with no clients.

about NTP clients behind a NAT or firewall, as well as servers
that a client is configured for but not synchronized to.7 The
degree distribution is highly skewed. Of 13.1M IPs in our
dataset, about 3.7M (27.8%) had clients below them in the
NTP hierarchy. Of these 3.7M servers with clients, 99.4% of
them have fewer than 10 clients, while only 0.2% of them
have more than 100 clients. However, servers with more than
100 client tend to have many clients, averaging above 1.5K
clients per server, with the top 50 servers having at least
24.5K clients each. Compromising these important servers (or
hijacking their traffic) can therefore impact large swaths of the
NTP ecosystem.

IV. HOW TO STEP TIME WITH NTP.

Unauthenticated NTP traffic is vulnerable to on-path at-
tacks, as was pointed out by Selvi [59] and others [21], [27],
[44]. While on-path attacks are sometimes dismissed because
the attacker requires a privileged position on the network, it
is important to remember that an attacker can use various
traffic hijacking techniques to place herself on the path to an
NTP server. For instance, ntpd configuration files allow clients
to name servers by either their IP or their hostname. (MAC
OS X 10.9.5, for example, comes with an NTP client that is
preconfigured to take time from the host time.apple.com, while
many systems rely on the pool of NTP servers that share the
hostname pool.ntp.org.) If the DNS entries for these hostnames
are quietly hijacked [24], [25], then an attacker can quietly
manipulate the NTP traffic they send. Moreover, NTP relies
on the correctness of IP addresses; thus attacks on interdomain
routing with BGP [19] (similar to those seen in the wild [14],
[50]) can be used to divert NTP traffic to an attacker.

In Section II and Table I we saw that dramatic shifts in
time (years, months) are required when NTP attacks are used
inside larger, more nefarious attacks. Can an on-path attacker
really cause NTP clients to accept such dramatic shifts in time?

A. Time skimming

At first glance, the answer should be no. NTP defines a
value called the panic threshold which is 1000 sec (about 16
minutes) by default; if NTP attempts to tell the client to alter
its local clock by a value that exceeds the panic threshold, then
the NTP client “SHOULD exit with a diagnostic message to
the system log” [41]. Our experiments confirm that ntpd v4.2.6
and v4.2.8 quit when they are initially synchronized to a server
that then starts to offer time that exceeds the panic threshold.

7Earlier studies [43], [46] used monlist responses, which are now commonly
deactivated, to obtain topologies. We present a new technique that exposes a
client’s servers in Section V-C, but as it is also a denial-of-service attack on
the client, we have not used it to augment our measurements.

Selvi [59] suggests circumventing this using a “time skim-
ming” attack, where a man-in-the-middle attacker slowly steps
the client’s local clock back/forward in steps smaller than the
panic threshold. However, time skimming comes with a big
caveat: it can take minutes or hours for NTP to update a client’s
local clock. To understand why, we observe that in addition
to the panic threshold, NTP also defines a step threshold of
125 ms [41]. A client will accept a time step larger than step
threshold but smaller than the panic threshold as long as at least
“stepout” seconds have elapsed since its last clock update; the
stepout value is 900 seconds (15 minutes) in ntpd v4.2.6 and
RFC 5905 [41], and was reduced to 300 seconds (5 minutes)
in ntpd v4.2.8. Thus, shifting the client back one year using
steps of size 16 minute each requires 1×365×24×60

16 = 33K
steps in total; with a 5 minute stepout value, this attack takes
at least 114 days. However, there are other ways to quickly
shift a client’s time.

B. Exploiting reboot.

ntpd has a configuration option called -g, which allows an
NTP client that first initializes (i.e., before it has synchronized
to any time source) to accept any time shift, even one exceed-
ing the panic threshold. This configuration is quite natural for
clocks that drift significantly when systems are powered down;
indeed, many OSes, including Linux, run ntpd with -g by
default. We have confirmed that both ntpd v4.2.6p5 and ntpd
v4.2.8p2 on Ubuntu13.16.0-24-generic accept a single step 10
years back in time, and forward in time, upon reboot.

Reboot. An on-path attacker can exploit the -g configuration
to dramatically shift time at the client by waiting until the
client restarts as a result of power cycling, software updates, or
other ‘natural events’. Importantly, the on-path attacker knows
exactly when the client has restarted, because the client puts
‘INIT’ in the reference ID of every NTP packet the client
sends (Figure 1), including the mode 3 queries sent to the
server. Moreover, the a determined attacker that can also use
packet-of-death techniques (e.g., Teardrop [9]) to deliberately
reboot the OS, and cause ntpd to restart.

Feel free to panic. Suppose, on the other hand, that an
NTP attacker shifts a client’s time beyond the panic threshold,
causing the client to quit. If the operating system is configured
to reboot the NTP client, the rebooted NTP client will initialize
and accept whatever (bogus) time it obtains from its NTP
servers. Indeed, this seems to have happened with some OSes
during the November 2012 NTP incident [38].

Small-step-big-step. Users might notice strange shifts in time
if they occur immediately upon reboot. However, we have
found that ntpd allows an on-path attacker to shift time when
clients are less likely to notice.

To understand how, we need to look into ntpd’s imple-
mentation of the -g configuration. One might expect -g
to allow for timesteps that exceed the panic threshold only
upon initialization—when the client updates its clock for
the very first time upon starting. To implement this, the
ntpd allows steps exceeding the panic threshold only when
a variable called allow_panic is TRUE. It turns out that
sets allow_panic to TRUE only upon initialization with the
-g configuration (otherwise, it is initialized to FALSE), and is
set to FALSE if the client (1) is just about to update its local
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clock by a value less than the step threshold (125ms), and (2)
is already in a state called SYNC, which means it recently
updated its clock by a value less than the step threshold.
Normally, a client initializes and (1) and (2) occur after two
clock updates. However, if an attacker is able to prevent the
client from making ever two contiguous clock updates (one
after the other) of less than 125 ms each, then allow_panic
remains TRUE.

The following small-step-big-step attack on ntpd v4.2.6
exploits the above observation. First, the client reboots and
begins initializing; it signals this to the server by putting
‘INIT’ in the reference ID of its mode 3 queries [41, Fig.
13]). Next, the client synchronizes to the server; it signals
this with the server’s IP address in the reference ID of its
mode 3 queries [41, Fig. 13]). When the server sees that the
client has synchronized once, the server sends the client a
‘small step’ greater than the STEP threshold (125 ms) and less
than the panic threshold (≈ 16 min); the client signals that it
has accepted this timestep by putting ‘STEP’ in its reference
ID [41, Fig. 13]). When the server sees that the client is in
‘STEP’ mode, the server immediately sends the client a big
step that exceeds the panic threshold. At this point, the client
does not panic, because it never set allow_panic to FALSE.
Indeed, one might even interpret this as expected behavior per
RFC 5905 [41]:

STEP means the offset is less than the panic thresh-
old, but greater than the step threshold STEPT (125
ms). In this case, the clock is stepped to the correct
offset, but ... all associations MUST be reset and the
client begins as at initial start.

Notice that this attack gives the server some ‘slack time’ before
it sends the client the bogus big time step.

We confirmed this behavior with ntpd v4.2.6p5, with a
small step of 10 minutes and a big step of 1 year; the client
exchanges 3 packets with the server before it first synchronizes
with it, then 21 packets before it accepts the small 10 minute
step and gets into the STEP mode, and 25 packets before it
accepts the big 1 year step and gets into STEP mode.

The small-step-big-step attack is slightly different with
ntpd v4.2.8p2. With ntpd v4.2.8p2, allow_panic is set to
FALSE under conditions (1) and (2), OR if (1) holds and (3)
the client is in FSET state, which is the state the client enters
upon initialization. Normally, a client initializes and (1) and
(3) occur after one clock update. Thus, our small-step-big-
step attacks works as long as every clock update the client
receives exceeds the step threshold (125ms). We confirmed
this behavior for an ntpd v4.2.8p2 client with a small step of
10 minutes and two big steps of 1 year. The very first mode
4 response received by the client, upon initialization, was the
small step of 10 minutes back in time; the client immediately
went into ‘STEP’ mode upon receipt of this packet. The next
mode 4 response received by the client was a big step of 1
year back in time, which the client accepted after sending 11
queries to the server. The next mode 4 response was a another
big step of 1 year, which the client accepted after sending 10
queries to the server.

Stealthy time shift. As an application of the small-step-big-
step attack, an on-path attacker can preform a bogus big step

and then quickly to bring the client’s clock back to normal, so
that the client never notices the time shift; this attack might be
useful to stealthily flush a client’s cache, or to cause a specific
cryptographic object to expire (see Section II). To do this,
the attacker waits for ntpd to reboot (or deliberately causes
a reboot), and ensures that every clock update made by the
client makes is larger than 125 ms, sending the client into
STEP mode. To keep things stealthy, the attacker can e.g.,
first shift the client forward in time by 150 ms, then back in
time by 150 ms, then forward in time by 150 ms, etc.. Then,
once the attacker is ready, it can send the client a big step that
exceeds the panic threshold, perform its nefarious deeds, and
finally send another big step that sets the client’s clock back
to the correct time.

C. Recommendation: Careful with -g

The security of ntpd should should not rely on 100%
OS uptime, so users should be careful with the -g option.
One solution is to not use the -g option. Alternatively, one
can detect feel-free-to-panic attacks by monitoring the system
log for panic events and being careful when automatically
restarting ntpd after it quits. Monitoring should also be used
detect suspicious reboots of the OS (that might indicate the
presence of a small-step-big-step or other reboot-based on-
path attacks). Implementors can prevent small-step-big-step
attacks by patching ntpd to ensure that the allow_panic
variable is set to FALSE after the very first clock update
upon initialization; this issue has been captured in CVE-2015-
5300. Moreover, implementors can prevent ntpd clients from
putting ‘INIT’ in the reference ID of their NTP packets upon
initializing; this would make it more difficult for on-path
attackers to know when initialization is taking place, raising
the bar for attacks that exploit reboot.

V. KISS-O’-DEATH:
OFF-PATH DENIAL-OF-SERVICE ATTACKS.

In this section, we discuss how NTP security can be
stymied by another aspect of the NTP protocol: the ‘Kiss-o-
death’ (KoD) packet. KoD packets are designed to reduce load
at an NTP server by rate-limiting clients that query the server
too frequently; upon receipt of a KoD packet from its server,
the client refrains from querying that server for some period of
time [41, Sec 7.4]. We find that KoD packets can be trivially
spoofed, even by an off-path attacker. We then show how an
off-path attacker can send a single spoofed KoD packet and
prevent a client from synchronizing to any of its preconfigured
NTP servers for days or even years. We also consider using
KoDs to pin a client to a bad timekeeper.

A. Why are off-path attacks hard?

We first need to understand why it is usually difficult to
spoof NTP mode 4 packets (Figure 1) from off-path.

TEST2: The origin timestamp. Like many other protocols,
NTP requires clients to check that a nonce in the client’s query
matches a nonce in the server’s response; that way, an off-path
attacker, that cannot observe client-server communications,
does not know the nonce and thus has difficulty spoofing
the packet. (This is analogous to source port randomization
in TCP/UDP, sequence number randomization in TCP, and
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Fig. 3. Kiss-o’-Death (KoD) packet, telling the client to keep quiet for at
least 217 seconds (36 hours).

transaction ID randomization in DNS.) NTP uses the origin
timestamp as a nonce: the client checks that (a) the origin
timestamp on the mode 4 response sent from server to client
(Figure 1), matches (b) the client’s local time when he sent
the corresponding mode 3 query, which is sent in the transmit
timestamp field of the mode 3 query sent from client to server.
This is called TEST2 in the ntpd code. (Note that ntpd does
not randomize the UDP source port to create an additional
nonce; instead, all NTP packets have UDP source port 123.)

How much entropy is in NTP’s nonce? The origin times-
tamp is a 64 bit value, where the first 32 bits represent seconds
elapsed since January 1, 1900, and the last 32 bits represent
fractional seconds. A client whose system clock has e.g.,
ρ = −12 bit precision (2−12 = 244µs) puts a 32 − 12 = 20-
bit random value in the least significant bit of the timestamp.
Thus, for precision ρ, the origin timestamp has at least 32 + ρ
bits of entropy. However, because polling intervals are no
shorter than 16 seconds [41], an off-path attacker is unlikely
to know exactly when the client sent its mode 3 query. We
therefore suppose that the origin timestamp has about 32 bits
of entropy. This is a lot of entropy, so one might conclude that
NTP is robust to off-path attacks. However, in this section and
Section VI, we will show that this is not the case.

B. Exploiting the Kiss-O’-Death Packet

A server sends a client a Kiss-O’-Death (KoD) if a client
queries it too many times within a specified time interval; the
parameters for sending KoD are server dependent. A sample
KoD packet is shown in Figure 3. The KoD is characterized by
mode 4, leap indicator 3, stratum 0 and an ASCII ‘kiss code’
string in the reference ID field. According to RFC5905 [41]:

For kiss code RATE, the client MUST immediately
reduce its polling interval to that server and continue
to reduce it each time it receives a RATE kiss code.

In ntpd v4.2.6 and v4.2.8, this is implemented by having the
client stop querying the server for a period that is at least as

long as the poll value field in the received KoD packet.8 Our
experiments confirm that if the KoD packet has polling interval
τkod = 17 (the maximum allowable polling interval [41]) then
the ntpd v4.2.8 client will stop querying the server for at least
2τkod sec (36 hours). 9 The poll field in the NTP packet is an
8-bit value (i.e., ranging from 0 to 255), but RFC 5905 [41, pg
10] defines the maximum allowable poll value to be 17. The
most recent ntpd implementation, however, will accept KoDs
with poll values even larger than 17; setting τkod = 25, for
example, should cause the client to stop querying its server
for at least 225 seconds, or about 1 year.

Spoofing a KoD from off-path. How does the client know that
the KoD packet came from the legitimate server, and not from
an attacker? With regular mode 4 responses, the client uses
the origin timestamp as a nonce. While it seems reasonable
to expect this check to be performed on the KoD packet as
well, RFC 5905 [41, Sec. 7.4] does not seem to explicitly
require this. Moreover, lab experiments with ntpd v4.2.6 and
v4.2.8 show that the client accepts a KoD even if its origin
timestamp is bogus. This means that an offpath attacker can
trivially send the client a KoD that is spoofed to look like it
came from its server; the only information the attacker needs is
the IP addresses of the relevant client and server. Moreover, by
setting the poll value in the spoofed KoD to be an unreasonably
high value (e.g., τkod = 25), the spoofed KoD will prevent the
client for querying its server for an extended period of time
(e.g., a year).

Eliciting a KoD from off-path: Priming the pump. Moreover,
even if the client did validate the origin timestamp on the KoD
packet, an off-path attacker could still elicit a valid KoD packet
for the client from the server. The idea here is to have the
off-path attacker ‘prime-the-pump’ at the server, by sending
multiple mode 3 queries spoofed to look like they come from
the victim client; the server then ‘gets angry’ at the client, and
responds to the client’s legitimate mode 3 queries with a KoD.
The attacker just needs to measure the number of times q in
a given period of time t0 that a client must query the server
in order to elicit a KoD; this is easily done by attempting
to get the server to send KoD packets to the attacker’s own
machine. Then, the attacker sends the server q−1 queries with
source IP spoofed to that of the victim client, and hopes that
the client sends its own query to server before time t0 elapses.
If this happens, the server will send the client a KoD packet
with valid origin timestamp (matching the query that the client
actually sent to the server), and the client will accept the KoD.
Interestingly, recent NTP security bulletins have increased this

8Interestingly, RFC 5905 [41, Sec. 7.4] defines an even more dangerous
type of KoD packet: “ For kiss codes DENY and RSTR, the client MUST
demobilize any associations to that server and stop sending packets to that
server”. Thus, spoofing a single DENY or RSTR KoD packet can completely
disconnect a client from its server! Fortunately, however, we have not found
an implementation that honors this functionality.

9Due to complex interactions between τkod, the poll value in the KoD
packet, and NTP’s polling algorithm, the period of time that the client stops
querying the server will usually exceed 2τkod . More precisely, the client’s
polling algorithm resets the minpoll value τmin for the server sending the
KoD to τmin = max(τmin, τkod) and then the client stops querying the
server for a period of about 2max(τmin+1,max(min(τmax,τkod))). By default,
minpoll is initialized to τmin = 6, and maxpoll to τmax = 10.
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attack surface by recommending that servers send KoDs [5].10

Attack efficiency. The current ntpd implementation (v4.2.8p3)
does not require clients to validate the origin timestamp on
the KoD. This means that a single spoofed KoD packet with a
unreasonably high poll value (e.g., τkod = 25) will essentially
prevent the client from ever taking time from its server.
Meanwhile, even if the client does validate the KoD’s origin
timestamp, an off-path attacker can still elicit a valid KoD
by priming the pump. This, however, requires the attacker to
expend more resources by sending more packets to the client’s
server. Specifically: (1) The attacker must send several packets
to the server to elicit the KoD, and
2) The attacker no longer controls the poll value in the elicited
KoD packet. When ntpd servers send KoDs, the KoD’s poll
value taukod is at least as large as that in the query triggering
the KoD. Since (1) the elicited KoD is sent in response to
a legitimate query sent by the client (so that it has a valid
origin timestamp), and (2) the poll value in the client’s query
should not exceed τ = 10 (the default maxpoll), it follows
that the elicited KoD packet is likely to have poll value no
larger than 10. The attacker can now elicit a KoD that keeps
the client quiet for about 210 seconds (15 minutes), prime-
the-pump again 15 minutes later to elicit another KoD, and
continue this indefinitely.
Thus, requiring clients to validate the origin timestamp on the
KoD will weaken any KoD-related attacks, but not entirely
eliminate them.

C. Low-rate off-path denial-of-service attack on NTP clients.

Its tempting to argue that NTP clients are commonly pre-
configured with multiple servers, and thus any KoD-related
attacks on one server can be mitigated by the presence of the
other servers. However, this is not the case.

We present a denial-of-service attack that allows an off-
path attacker, located anywhere on the Internet, to “turn off”
NTP at that client by preventing the client from synchronizing
to any of its preconfigured servers. What are the implications
of this attack? For the most part, the client will just sit there
and rely on its own local clock for the time. If the client has
accurate local time-keeping abilities, then this attack is unlikely
to cause much damage. On the other hand, the client machine
could be incapable of keeping time for itself, e.g., because it is
in a virtual machine [67], or running CPU-intensive operations
that induce clock drift. In this case, the client’s clock will drift
along, uncorrected by NTP, for the duration of attack.

The denial of service attack. The attack proceeds as follows:

1) The attacker sends a mode 3 NTP query to the victim
client, and the client replies with a mode 4 NTP response. The
attacker uses the reference ID in the mode 4 response to learn
the IP of the server to which the client is synchronized.

2) The attacker spoofs/elicits a KoD packet with τkod from
the server to which the client is synchronized. The client stops
querying this server for at least 2τkod sec.

10As of August 2015, [5] recommends the configuration restrict
default limited kod nomodify notrap nopeer. Note that turn-
ing on limited means that a server will not serve time to a client that queries
it too frequently; kod additionally configures the server to send KoDs.

3) There are now two cases. Case 1: the client declines
to take time from any its of other preconfigured servers; thus,
the attacker has succeeded in deactivating NTP at the client.
Case 2: The client will synchronize to another one of its
preconfigured servers, and the attacker returns to step 1. To
determine whether the client is in the Case 1 or Case 2, the
attacker periodically sends mode 3 queries to the client, and
checks if the reference ID in the mode 4 response has changed.

Thus, the attacker learns the IP addresses of all the precon-
figured servers from which the client is willing to take time,
and periodically (e.g., once every 2τkod seconds), spoofs KoD
packets from each of them. The client will not synchronize
to any of its preconfigured servers, and NTP is deactivated.
Moreover, this attack can continue indefinitely.

Attack surface. For this attack to work, the client must
(1) react to KoD packets by refraining from querying the
KoD-sending server, (2) respond to NTP mode 3 queries with
NTP mode 4 responses, and (3) be synchronized an IPv4
NTP server. This creates a large attack surface: condition (1)
holds for ntpd v4.2.6 and v4.2.8p3, the most recent reference
implementation of NTP, and our scans (Section III-B) suggest
that over 13M IPs satisfy condition (2).

Sample experiment. We ran this attack on an ntpd v4.2.8p2
client in our lab configured with the IP addresses of three
NTP servers in the wild. We elicited a KoD for each server in
turn, waiting for the client that resynchronize to a new server
before eliciting a new KoD from that server. To elicit a KoD,
a (separate) attack machine in our lab ran a scapy script that
sent the server 90 mode 3 queries in rapid succession, each of
which was spoofed with the source IP of our victim client and
origin timestamp equal to the current time on the attacker’s
machine. (Notice that the origin timestamp is bogus from the
perspective of the victim client.) Because our spoofed mode
3 queries had poll value τ = 17, the elicited KoDs had poll
value τ = 17. Our client received its third KoD within 1.5
hours, and stopped querying its servers for the requested 217

seconds (36 hours); in fact, the client had been quiet for 50
hours when we stopped the experiment.

D. Pinning to a bad timekeeper. (Part 1: The attack)

Consider a client that is preconfigured with several servers,
one of which is a bad timekeeper. Can KoDs force the client to
synchronize to the bad timekeeper? Indeed, since ntpd clients
and configurations are rarely updated (see Table II, that shows
that 1.9M servers use a version of ntpd that was released in
2001), a bad timekeeper might be lurking in rarely-updated
lists of preconfigured servers.

The attack. The attacker uses the KoD denial-of-service attack
(Section V-C) to learn the client’s preconfigured servers; each
time the attacker learns a new server, the attacker sends a
mode 3 query to the server to check if it is a good timekeeper,
continuing to spoof KoDs until it identifies a server that is a
bad timekeeper. At this point, the client is taking time from a
bad timekeeper, and the attack succeeds.

But does this attack actually work? NTP’s clock discipline
algorithms are designed to guard against attacks of this type.
We have launched this attack against different clients (in our
lab) configured to servers (in the wild), and observed differing

8



results; sometimes, that client does take time from the bad
timekeeper, and sometimes it does not. (See the full version
for details on our experiments.) Unfortunately, however, we
have not yet understood exactly what conditions are required
for this attack to succeed. One thing we do know, however, are
conditions that would definitely cause this attack to fail. We
explain these conditions by taking detour into some aspects of
NTP’s clock discipline algorithm, that will also be important
for the attacks in Section VI.

E. Detour: NTP’s clock discipline algorithms.

An NTP client only updates its local clock from its chosen
server at infrequent intervals. Each valid mode 4 response
that the client obtains from its server is a sample of the
timing information at that server. A client needs to obtain
enough “good” samples from a server before it even considers
taking time from that server. Empty samples are recorded
under various failure conditions; we discussed one such failure
condition, TEST2 (origin timestamp validity) in Section V-A.

For each non-empty sample, the client records the offset θ
per equation (2) and delay δ per equation (1). The client keeps
up to eight samples from each server, and selects the offset θ∗
corresponding to the non-empty sample of lowest delay δ∗.
It then computes the jitter ψ, which is the root-mean-square
distance of the sample offsets from θ∗, i.e.,

ψ =

√
1
i−1

∑
i

(θi − θ∗)2 (3)

Next, the server must pass another crucial check:

TEST11. Check that the root distance Λ does not ex-
ceed MAXDIST, a parameter that defaults to 1.5 sec. While
RFC 5905 [41, Appendix A.5.5.2], ntpd v4.2.6 and ntpd v4.2.8
each use a slightly different definition of Λ, what matters is

Λ ∝ ψ + (δ∗ + ∆)/2 + E + 2ρ (4)

where ∆ is the root delay, E is the root dispersion, and ρ
is the precision, all which are read off the server’s mode 4
packet per Figure 1. (Precision ρ reveals the resolution of the
server’s local clock; e.g., ρ = −12 means the server’s local
clock is precise to within 2−12 sec or 244 µs. Root delay ∆ is
the cumulative delay from the server to the ‘root’ (i.e., stratum
1 server) in the NTP client-server hierarchy from which the
server is taking time; a stratum 1 server typically has ∆ = 0.
Root dispersion E is an implementation-dependent quantity
related to the Λ value computed by the server.)

If the client has several servers that pass TEST11 (and other
tests we omit here), the client must select a single server to
synchronize its clock. This is done with a variant of Marzullo’s
Algorithm [36], which clusters servers according to offset
θ∗ (equation (2)) and other metrics. Servers who differ too
much from the majority are ignored, while the remaining
servers are added to a ‘survivor list’. (This is why, under
normal conditions, NTP clients do not synchronize to bad
timekeepers.) If all servers on the survivor list are different
from the server the client used for its most recent clock update,
the client must decide whether or not to “clock hop” to a
new server. The clock hop decision is made by various other
algorithms that are different in ntpd v4.2.6 and ntpd v4.2.8. If
no clock hop occurs, the client does not update its clock.

Fig. 4. Cumulative distribution of the size of the subtrees rooted at bad
timekeepers (with offset θ > 10 sec) that can pass TEST11 (because ∆/2 +
E + 2ρ < 1 sec), broken out by the bad timekeeper’s stratum. We omit bad
timekeepers with no children.

F. Pinning to a bad timekeeper. (Part 2: Attack surface)

Thus, for a client to synchronize to a bad timekeeper, we
know that the bad timekeeper must be able to pass TEST11.
In practice, we found that this means that bad timekeeper must
send mode 4 packets (Figure 1) with root delay ∆ and root
dispersion E and precision ρ such that ∆/2 + E + 2ρ < 1
sec. In addition to this, the bad timekeeper must (1) “defeat”
the good timekeepers in Marzullo’s algorithm, and then (2)
convince the client to clock hop. As part of ongoing work, we
are attempting to determine the requirements for (1) and (2).

KoD + reboot. There is one way around all of the issues
discussed so far. If ntpd reboots,11 then the attacker has a short
window during which the client is not synchronized to any
of its preconfigured servers; our experiments confirm that in
ntpd v4.2.6 this window is at least 4 polling intervals (i.e.,
the minimum polling interval is 24 sec, so this translates to at
least 1 min), while ntpd v4.2.8 shortens this to after the client
receives its first mode 4 responses from its servers. Thus, the
attacker can exploit this short window of time to spoof a KoD
packet from each of the clients’ good-timekeeper servers, but
not from the bad timekeeper. As long as the bad timekeeper
passes TEST11, the attacker no longer has to worry about
Marzullo’s algorithm, clock-hopping, or exceeding the panic
threshold, and the attack will succeed.

Bad timekeepers in the wild. To quantify the attack surface
resulting from pinning to a bad timekeeper, we checked which
bad timekeepers (with offset θ > 10 sec) are “good enough” to
have (a) ∆/2+E+2ρ < 1 sec and (b) stratum that is not 0 or
16. Of the 3.7M bad timekeepers in our dataset (Section III-B),
about 368K (or 10%) are “good enough” to pass the necessary
tests. Meanwhile, we found only 2190 bad timekeepers that
had clients below them in the NTP hierarchy, and of these,
743 were “good enough”. While our topology is necessarily
incomplete (Section III-B), this suggests that there are only a
limited number of servers in the wild that can be used for these
attacks. Figure 4 is a cumulative distribution of the size of the
subtrees rooted at bad timekeepers that are “good enough” to
pass the necessary tests, broken out by the bad timekeeper’s
stratum. Notice, however, that these distributions are highly
skewed, so some of the “good enough” bad timekeepers had
large subtrees below them in the NTP hierarchy. For example,
one stratum 1 server (in Central Europe) had an offset of 22
minutes and almost 20K clients in its subtree.

11A reboot can be elicited by sending a packet-of-death that restarts
the OS (e.g., Teardrop [9]) or the ntpd client (e.g., CVE-2014-9295 [48]).
Alternatively, the attacker can wait until the client reboots due to a power
cycling, software updates, or other ‘natural’ events.
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G. Recommendation: Kiss-o’-Death considered harmful.

Many of the problems we have described here arise because
KoD packets can be trivially spoofed. When we disclosed this
paper to the Network Time Foundation, NTPsec and others,
they quickly updated their implementations to validate the
origin timestamp on the KoD (Section V-A). Thus, a KoD
is no longer trivially spoofable with ntpd v4.2.8p4.

But does validating the origin timestamp on the KoD
eliminate the problems we have discussed here? While this
is certainly an improvement on the current state of affairs,
we still contend that the origin timestamp is not a sufficient
defense against KoD-related security issues. As we argued in
Section V-B, even if clients validate the origin timestamp in the
KoD packet, an attacker can still elicit valid KoDs by ‘priming
the pump’ at any server that is willing to send KoDs. Priming-
the-pump, however, does require the attacker to send more
packets, as compared to just sending a single spoofed KoD.

There are several ways to defend against attackers that
‘prime the pump’ to elicit KoDs. NTP could simply eliminate
its KoD and other rate-limiting functionality; this, however,
eliminates a server’s ability to deal with heavy volumes of NTP
traffic. Alternatively, if clients are required to cryptographically
authenticate their queries to the server, then it is no longer
possible for an off-path attacker to prime the pump at the
server by spoofing mode 3 queries from the client. Interest-
ingly, however, a new proposal for securing NTP [61, Sec.
6.1.3] only suggests authenticating mode 4 responses from
the server to client, but not mode 3 queries from server to
client. Alternatively, in the absence of authentication, NTP can
apply techniques developed for rate-limiting other protocols,
e.g., Response Rate Limiting (RRL) in the DNS [65]. With
RRL, nameservers do not respond to queries from clients that
query them too frequently.12 Like NTP, DNS is sent over
unauthenticated UDP, and therefore is at risk for the same
priming-the-pump attacks we discussed here. RRL addresses
this by requiring a server to randomly respond to some fraction
of the client’s queries, even if that client is rate limited [66,
Sec. 2.2.7]; thus, even a client that is subject to a priming-
the-pump attack can still get some good information from the
server. To apply this to NTP, a server that is rate-limiting a
client with KoDs would send legitimate mode 4 responses
(instead of a KoD) to the client’s queries with some probability.
For this to be effective, NTP clients should also limit the period
for which they are willing to keep quiet upon receipt of a KoD;
not querying the server for days (τkod = 17 ) or even years
(τkod = 25) upon receipt of a single KoD packet is excessive
and invites abuse.

VI. OFF-PATH NTP FRAGMENTATION ATTACK

In this section, we show how an off-path attacker can hijack
an unauthenticated NTP connection from a client to its server.
The key ingredient in our attack is IPv4 packet fragmentation;
therefore this attack succeeds against clients and servers that
use certain classes of IPv4 packet fragmentation policies
(Section VI-E). We will assume the client is preconfigured
with only one server; some OSes (e.g., MAC OS X v10.9.5)
actually do use this configuration, and the KoD + reboot

12ntpd also offers this type of rate limiting, as an alternative to the KoD,
via the limited configuration option

technique from Section V-F can simulate this scenario for
clients preconfigured with multiple servers. We first explain
why off-path attacks are challenging, and then provide some
background on IPv4 packet fragmentation [52] and overlapping
IPv4 packet fragments [49], [54], [60]. Next, we present the
attack itself, explain when it works, and conclude with a
measurement study that sheds light on the number of clients
and servers in the wild that are vulnerable to this attack.

A. Why are off-path attacks hard?

The goal of our attacker is to spoof a series of mode
4 response packets (Figure 1) from the server to the client.
The spoofed response should contain bogus server timestamps
(i.e., T3 transmit timestamp, T2 receive timestamp) in order to
convince the client to accept bogus time from the server. This
creates several hurdles for an off-path attacker who cannot see
the communication between client and server:

First, there is the issue of nonces. Per Section V-A, the
attacker must spoof packets with the correct origin timestamp,
which has about 32 bits of entropy. Our off-path attacker
will not even try to learn the origin timestamp; instead, we
use the origin timestamp from the honest mode 4 response
from server to client, and use IPv4 packet fragmentation to
overwrite other relevant fields of the NTP packet. Note that
origin timestamp is the only nonce in the NTP packet; UDP
source-port randomization is not used by any of the NTP
clients we have tested, which set source port to 123.

Second, since our attacker does not know NTP’s origin
timestamp, it cannot compute the UDP checksum. However,
the UDP specification for IPv4 allows a host to accept any
packet with UDP checksum of zero (which means: don’t bother
checking the checksum) [51, pg 2]. As such, our attacker uses
IPv4 fragmentation to set the UDP checksum to zero.

Third, in order to convince the client’s clock discipline
algorithms (Section V-E) to accept the attacker’s bogus time,
our attacker must spoof a stream of several (at least eight,
but usually more) packets that are acceptable to the clock
discipline algorithm. This is significantly more challenging
than just spoofing a single packet as in e.g., [24], [25].
Moreover, this stream of spoofed packets must be sufficiently
self-consistent to pass TEST11 (Section V-E), which, as we
shall see, can be even more challenging.

B. IPv4 packet fragmentation.

Packet fragmentation is one of IP’s original functionali-
ties [52]; chopping a large packet into fragments that can
be sent through networks that can only handle short packets.
The length of the largest packet that a network element can
accommodate is its ‘maximum transmission unit (MTU)’. In
practice, almost every network element today supports an
MTU of at least 1492 bytes (the maximum payload size for
Ethernet v2 [35, Sec. 7]). Back in 1981, however, RFC791 [52]
required that “all hosts must be prepared to accept” IPv4
packets of length 576 bytes, while “every internet module
must be able to forward” IPv4 packets of length 68 bytes. The
minimum IPv4 MTU for the Internet is therefore 68 bytes,
but many OSes refuse to fragment packets to MTUs smaller
than 576 bytes. Our attack only succeeds against servers that
are willing to fragment to a 68 byte MTU; this way the
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Fig. 5. ICMP Fragmentation Needed packet from attacker 6.6.6.6 telling
server 42.42.42.42 to fragment NTP packets for client 43.43.43.43 to MTU
of 68 bytes.

attacker can convince a server to chop an NTP packet into
the two fragments on the right of Figure 6. Our measurements
(Section VI-G) confirm that there are ten of thousands of NTP
servers in the wild that do this.

ICMP Fragmentation Needed. How does a host learn that it
needs to fragment packets to a specific MTU? Any network
element on the path from sender to receiver can send a single
ICMP fragmentation needed packet to the sender containing
the desired MTU; this information is then cached for some
OS-dependent period of time (e.g., 10 minutes by default
on Linux 3.13.0 and MAC OS X 10.9.5). Figure 5 shows
an ICMP fragmentation needed packet that signals to host
42.42.42.42 to fragment all NTP packets (UDP port 123) it
sends to destination IP 43.43.43.43 to an MTU of 68 bytes.
Since the host is not expected to know the IP addresses of
all the network elements on its path, this packet can be sent
from any source IP; in Figure 5 this source IP is 6.6.6.6. The
payload of this ICMP packet contains an IP header and first
eight bytes of a packet that has already been sent by host and
exceeded the MTU [53]; for NTP, these eight bytes correspond
to the UDP header. The sender uses this to determine which
destination IP (i.e., 43.43.43.43) and protocol (i.e., UDP port
123) requires fragmentation. Our attacker (at IP 6.6.6.6) can
easily signal an ICMP fragmentation needed from off-path. Its
only challenge is (1) choosing UDP checksum (which it sets to
zero) and (2) matching the IPID in the ICMP payload with that
in an NTP packet previously sent to the client (which it can
do, see Section VI-D, and moreover some OSes don’t bother
checking this (e.g., Linux 3.13.0)).

IPv4 Fragmentation. How do we know that an IPv4 packet is
a fragment? Three IPv4 fields are relevant (see Figure 1). Frag-
ment offset specifies the offset of a particular fragment relative
to the beginning of the original unfragmented IP packet; the
first fragment has an offset of zero. The more fragment (MF)
flag is set for every fragment except the last fragment. IPID
indicates that a set of fragments all belong to the same original
IP packet. Our attacker infers IPID (Section VI-D), and then
sends the client spoofed IPv4 fragments with the same IPID as
the legitimate fragments sent from the server, as in Figure 6.
The spoofed and legitimate fragments are reassembled by the
client into a single crafted NTP packet.

Fragment reassembly. How does a host reassemble a frag-
mented IPv4 packet? In the common case, the fragments are

non-overlapping, so that the offset of one fragment begins
immediately after the previous fragment ends. In this case,
the host checks its fragment buffer for fragments with the
same IPID, and pastes their payloads together according to
their fragment offset, checking that the last fragment has a
MF=0 [52]. Fragment buffer implementations differ in differ-
ent OSes [24], [28]. Meanwhile, the RFCs are mostly silent
about reassembly of overlapping fragments, like the ones in
Figure 6.13 Several authors [6], [49], [54], [60] have observed
that reassembly policies differ for different operating systems,
and have undertaken to determine these policies using clever
network measurement tricks. (Hilariously, wireshark has an
overlapping fragment reassembly policy that is independent
of its host OS [6] and is therefore useless for this purpose.)
Our attacks also rely on overlapping fragments. Overlapping
fragment reassembly policies are surprisingly complex, poorly
documented, and have changed over time. Thus, instead of
generically describing them, we just consider reassembly for
the specific fragments used in our attack.

C. Exploiting overlapping IPv4 fragments.

Our attack proceeds as follows. The attacker sends the
server a spoofed ICMP fragmentation needed packet (Figure 5)
requesting fragmentation to a 68-byte MTU for all NTP
packets sent to the client. If the server is willing to fragment
to a 68-byte MTU, the server sends all of its mode 4 NTP
responses as the two fragments on the right of Figure 6.
Meanwhile, our attacker plants the two spoofed fragments on
the left of Figure 6 in the client’s fragment buffer. The spoofed
fragments sit in the fragment buffer and wait for the server’s
legitimate fragments to arrive. The first spoofed fragment
should set the UDP checksum to zero while the second spoofed
fragment should set the NTP receive timestamp (T2) and
transmit timestamps (T3) to bogus time values. Both spoofed
fragments must have the same IPID as the two legitimate
fragments; we explain how to do this in Section VI-D. This
process of planting spoofed fragments continues for every
mode 4 NTP response that the server sends the client. One
the client has accepted the bogus time, the attacker spoofs
KoDs (Section V-C) so the client stops updating its clock. (The
attacker can check that the client accepted the bogus time by
sending it a mode 3 queries and checking the timestamps in
the client’s mode 4 response.)

The victim client receives the four overlapping fragments
in Figure 6, in the order shown, with the leftmost fragment
arriving earliest. How are they reassembled? One potential
outcome is for the client to reject the fragments altogether
because they are overlapping or too short. Otherwise, the
first honest fragment arrives in the client’s fragment buffer
and is reassembled with one or both of the spoofed frag-
ments, according to one of the reassembly outcomes shown
in Figure 7. In Outcome A the client prefers fragments that
arrive earliest, pasting the first legitimate fragment underneath
the two spoofed fragments that were waiting in the cache
(i.e., the ‘First’ policy in the Paxson/Shankar overlapping-
packet reassembly model [60], and the ‘First’, ‘Windows’ and
‘Solaris’ policies of Novak [49]). In Outcome B, the client

13RFC 3128 [40] does have some specific recommendations for overlapping
IPv4 fragments in the case of TCP; NTP, however, is sent over UDP. Also,
overlapping fragments are forbidden for IPv6.
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Fig. 6. IPv4 fragments for our attack: 1st and 2nd spoofed fragments followed by 1st and 2nd legitimate fragments.
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Fig. 7. Different ways our fragments may be reassembled. From left to right: Outcome A, Outcome B, Outcome C.

prefers an earlier fragment with an offset that is less than or
equal to a subsequent fragment (i.e., the ‘BSD’ policy of [49],
[60]). In Outcome C the client prefers fragments that arrive
later over those that arrive earlier (i.e., the ‘Last’ and ‘Linux’
policies of [49], [60].

In which outcome does our attack succeed? In Outcome C,
the packet is dropped due to its incorrect UDP checksum, and
our attack fails. In Outcomes A and B, our off-path attacker
successfully injects packets with the correct origin timestamp
and UDP checksum. Both Outcome A and B also allow the
attacker to control all the fields in NTP packet up to the
reference timestamp, including stratum, precision ρ, root delay
∆, root dispersion E, and polling interval τp. This is useful
because our attacker must ensure that the reassembled packets
pass TEST11, so that root distance Λ < 1.5 (see Section V-E
and equation (4)). Thus, our attacker can set these fields to
tiny values in the first spoofed fragment, e.g., ρ = −29,
∆ = 0.002, E = 0.003 sec and stratum = 1. Moreover,
in Outcome A the attacker controls both the NTP transmit
timestamp T3 and receive timestamp T2; by setting T2 ≈ T3,
the delay δ (equation (1)) is small enough to pass TEST11,
even if when spoofed T2 and T3 are very far from the legitimate
time. Meanwhile, in Outcome B, the attacker controls only
the transmit timestamp T3; passing TEST11 constrains the
spoofed T3 to be within about 1 sec of the legitimate T2.
Thus in Outcome B, the attacker can only shift time by 1
sec, making the attack less interesting. Our attack works best
when the client reassembles fragments as in Outcome A.

D. Planting spoofed fragments in the fragment buffer.

Because a client will only take time from a server that
provides several self-consistent time samples (Section V-E),
our attacker must craft a stream of NTP mode 4 responses. In
achieving this, our attacker must surmount two key hurdles:

Hurdle 1: Jitter. Our attacker must ensure that the reassem-
bled stream of packets is sufficiently self-consistent to pass
TEST11, so that root distance Λ < 1.5 sec (equation (4)). We
already discussed (Section VI-C) how the attacker can choose

tiny values for the precision ρ, root delay ∆ and root dispersion
E and delay δ . The remaining difficulty is therefore the jitter
ψ. Jitter ψ (equation (3)) is the variance in the offset values
θi (equation (2)) computed from packets in the stream. To
pass TEST11, the offset values θ in the reassembled stream
of packets must be consistent to within about 1 sec.

Why is this difficult? The key problem is that the offset θ
is determined by the timestamps T2 and T3 set in the attacker’s
second spoofed fragment (Figure 6), as well as the origin and
destination timestamps T1, T4. T1 corresponds to the moment
when the legitimate client sends its query, and is unknown
to our off-path attacker. Moreover, T1 roughly determines
T4, which roughly corresponds to the moment when the first
legitimate fragment reassembles with the spoofed fragments in
the client’s fragment buffer. Now suppose the fragment buffer
caches for 30 sec. This means that timestamps T2 and T3 (from
attacker’s second spoofed fragment) can sit in the fragment
buffer for anywhere from 0 to 30 sec before reassembly at time
T4 (Figure 6). Thus, the offset θ in the reassembled packet can
vary in the range of 0 to 30 sec, causing jitter ψ to be about
≈ 30 sec and the attacker to fail TEST11.

Hurdle 2: IPID. Our attacker must ensure that the IPID of
the spoofed fragments planted in the fragment buffer (the left
two fragments in Figure 6) match the IPID of the legitimate
fragments sent by the server (the right two fragments in
Figure 6); this way, the spoofed fragments will properly
reassemble with the legitimate fragments.

Surmounting these hurdles. To surmount the first hurdle,
our attacker ensures that the client’s fragment buffer always
contains fresh copies of the second spoofed fragment that are
no more than 1 sec old. Suppose that the client’s fragment
cache is a FIFO queue that holds a maximum of n fragments.
(Windows XP has n = 100 [28], and the Linux kernel
in [24] has n = 64) . Then, every second, the attacker
sends the client n/2 copies of its first spoofed fragment (each
with different IPIDs), and n/2 copies of the second spoofed
fragment, per Figure 6. Each second spoofed fragment has (1)
IPID corresponding to one of the first spoofed fragments, and
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(2) timestamps T2 and T3 corresponding to the (legitimate)
time that the fragment was sent plus some constant value
(e.g., x = +10 mins, where x represents how far the attacker
wants to shift the client forward/backward in time). Thus, every
second, a fresh batch of n fragments evicts the old batch of
n fragments. The reassembled packets have offset within ≈ 1
sec, so that jitter ψ ≈ 1 sec, and the attacker passes TEST11.

To surmount the second hurdle, our attack exploits the fact
that IPIDs are often predictable. Several policies for setting
IPID exist in the wild, including: globally-incrementing, i.e.,
the OS increments IPID by one for every sent packet, per-
destination-incrementing, i.e., the OS increments IPID by one
every packet sent to a particular destination IP, and random,
i.e., the IPID is selected at random for every packet [18].
Random IPIDs thwart our attacks. However, when the server
uses an incrementing IPID policy, the following techniques
allow our attacker to plant several copies of the spoofed
fragments with plausible IPIDs (cf., [18], [24], [28]):

Globally incrementing IPIDs: Before sending the client the
n/2 copies of the spoofed fragments, our attacker pings the
server to learn its IPID i, and sets IPID of its spoofed packets
accordingly (i.e., to i+ 1, i+ 2, ..., i+ n/2).

Per-destination incrementing IPIDs: Gilad and Hertzberg [18]
[28] show how per-destination incrementing IPIDs can be
inferred by a puppet (adversarial applet/script that runs in a
sandbox) on the client or server’s machine, while Knockell and
Crandall [28] show how to do this without puppets. Thus, at the
start of our attack, our attacker can use [18], [28]’s techniques
to learn the initial IPID i, then uses i to set IPIDs on the n/2
copies of its pairs of spoofed fragments. The choice of IPIDs
depends on the polling interval, i.e., the frequency at which
the client queries the server. NTP default poll values range
from τ = 6 (26 = 64 sec) to τ = 10 (1024 seconds) [41]. If
the attacker knew that the client was polling every 64 seconds,
it could send n/2 copies of the spoofed fragments with IPID
i+ 1,....,i+ n/2, and then increment i every 64 seconds.

More commonly, however, the polling interval is unknown.
To deal with this, the attacker can predict the IPID under
the assumption that the client and server consistently used
the minimum (resp., maximum) polling interval, and ensures
that all possible IPIDs in between are planted in the buffer.
As an example, suppose that 2048 seconds (30 mins) have
elapsed since the attacker learned that the IPID is i. At one
extreme, the client and server could have consistently used the
minimum default polling interval of 2τ = 64 sec; thus, imax =
i+2048/64 = i+32. At the other extreme, the client and server
could have consistently used the maximum default polling
interval of 2τ = 1024 sec; then imin = i+2048/1024 = i+2.
Then, the attacker must send pairs of spoofed fragments with
IPIDs ranging from imin = i+ 2 to imax = i+ 32. This works
as long as the fragment buffer can hold imax − imin > 30 · 2
fragments (as in e.g., Linux [24] and Windows XP [28]). When
2(imin − imax) exceeds the size of the fragment buffer n, the
attacker repeats [18], [28]’s techniques to learn IPID again.

Moreover, to avoid having to plant so many IPIDs in the
fragment buffer, the attacker can try making the polling interval
more predictable. Our experiments show that if a server
becomes “unreachable” (i.e., stops responding to queries) for
a short period, and starts to respond with packets with poll

field τp = 6, the ntpd v4.2.6 client will speed up its polling
interval to ≈ 64 sec. To simulate “unreachable” behavior from
off-path, the attacker can plant fragments with incorrect UDP
checksum (e.g., planting just the second spoofed fragment, but
not the first, per Figure 6). Then, after some time, the attack
begins with poll set to τp = 6 in the first spoofed fragment.

E. Conditions required for our attack.

In summary, our attack succeeds for a given victim NTP server
and victim NTP client if the following hold:

1) the server accepts and acts on ICMP fragmentation
needed packets for a 68-byte MTU, and
2) the server uses globally-incrementing or per-destination-
incrementing IPID, and
3) the client reassembles overlapping IPv4 fragments as in
Outcome A of Figure 7.

F. Proof-of-concept implementation of our attack.

We implemented a proof of concept of our attack on three lab
machines. Our server had per-destination incrementing IPID.

Server. Our victim server ran ntpd v4.2.8p2 on Linux 3.13.0-
24-generic kernel which uses a per-destination incrementing
IPID. This Linux kernel has configuration parameter min pmtu
that determines the minimum MTU to which the OS is willing
to fragment packets upon receipt of an ICMP fragmentation
needed packet; we manually set min pmtu to 68, so that the
server would satisfy the first condition of our attack.14

Client. Choosing the right client was a challenge. It is
extremely difficult to find documentation on overlapping frag-
ment reassembly policies for popular OSes. Moreover, these
policies change over time. For instance, in 2005 Novak [49]
found that MAC OS reassembles as in Outcome A, but our
July 2015 experiments indicated that MAC OS X v10.9.5
reassembles as in Outcome B. After testing various OSes,
we tried using the Snort IDS to emulate a common network
topology (Section VI-H), where a middlebox reassembles
fragmented packets before passing them on to end hosts [10].
We set up Snort in inline mode on a VM in front of another VM
with the ntpd v4.2.6 client. Unfortunately, Snort’s frag3 engine,
which reassembles overlapping IPv4 fragments according to
various policies, exhibited buggy behavior with UDP (even
though it worked fine with the ICMP fragments used in [49]).
Finally, we gave up and wrote our own fragment buffer in
python and scapy, running it on an Linux 3.16.0-23-generic
OS with ntpd v4.2.6p5.

Our fragment buffer code had two parts. The first part uses
scapy’s sniff function to detect IPv4 fragments, and then sends
them to our fragment buffer, which reassembles them and
passes them back to the OS. The second part uses nfqueue to
drop packets that were reassembled by the OS and pass packets
reassembled by our fragment buffer. The fragment buffer itself
is a FIFO queue with capacity n = 28 fragments and timeout

14The default value for min pmtu in Linux exceeds 500 bytes [58], so that
the vast majority of NTP servers running on Linux should not be vulnerable
to our attack. (Linux 2.2.13 is one notable exception; see Section VI-G.)
However, our measurements in Section VI-G indicate that servers in the wild
do fragment to a 68-byte MTU; we just use Linux 3.13.0 as a proof-of-concept
in our lab.
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Fig. 8. Absolute value of offset θ (above) and jitter ψ (below) computed by
the client during a proof-of-concept implementation of our attack.

t = 30 sec. Fragments older than t are evicted from the queue.
When the queue is full, a newly-arrived fragment evicts the
oldest fragment. The buffer reassembles packets according to
the ‘First’ policy15 in [60] (i.e., Outcome A in Figure 6).

Attacker. Our attacker machine ran code written in scapy.
Before the attack starts, we let the NTP client synchronize
to the server. After that, our attacker machine should infer the
IPID the server uses to send mode 4 packets to the client; rather
than reimplementing the IPID-inference techniques of [18],
[28], we just have the client machine send the initial IPID
i directly to the attack machine. At this point, the client no
longer reveals any more information to the attacker, and the
attack starts. The attacker first sends the server a spoofed ICMP
fragmentation needed packet requesting fragmentation to a 68-
byte MTU for the client; the server caches the request for 10
minutes, and starts sending the two rightmost fragments in
Figure 6. To keep the server fragmenting, the attacker send a
fresh ICMP fragmentation needed every 10 minutes.

Per Section VI-D, each second our attacker needs to send
the client a fresh batch of n/2 pairs of the two leftmost
fragments in Figure 6. Each pair had IPID in {(i+ 1), ..., (i+
n/2− 1)}, with i incremented every 70 seconds.16 Our attack
machine was a fairly lame eight-year old Fujitsu x86 64 with
1.8GB of memory running Linux 3.16.0-24-generic, and thus
could only manage to send thirteen pairs of the required
fragments within 1 second. We therefore set the size of the
FIFO queue on our client machine to n = 28. Our attacker
uses the fragmentation attack to launch a “small-step-big-
step” attack (Section IV): First, it sets receive and transmit
timestamps T2 and T3 in its second spoofed fragment to shift
the client 10 minutes back in time. Once the client enters
‘STEP’ mode, it sets T2 and T3 to shift the client one day
back in time. (Note that an off-path attacker can check that the
client is in ‘STEP’ mode by querying the client and checking
for ‘STEP’ in the reference ID of the response [41, Fig. 13].)

Results (Figure 8). We plot the results of one run of our
attack, obtained from the client’s ntpq program. We plot offset
θ (equation (2)) computed by the client for each mode 4 packet
the client (thinks it) received from the server. The horizontal

15The ‘First’ policy of [60] requires reassembly to prefer the fragment that
was received earliest by fragment buffer.

16NTP uses a randomized algorithm to set the polling interval. Our client
had not been running for long, so its polling interval was τ = 6 (64 sec), which
translates to intervals randomly chosen from the discrete set {64, 65, 66, 67}
sec. We therefore increment i every 70 seconds. However, per Section VI-D,
(1) an off-path attacker can push the polling interval down to τ = 6 by using
fragmentation to make the server to look like it has become ‘unreachable’,
and (2) if the fragment buffer has large n, our attack can accommodate larger
variation in the polling interval (e.g., MAC OS X has n = 1024 [28]).

IPID Per-Dest Globally incrementing
behavior Γ = 1 Γ = 10 Γ = 25 Γ = 50 Γ = 100 Γ = 250 Γ = 500
# servers 2,782 5,179 2,691 533 427 135 55
TABLE VI. IPID BEHAVIOR OF NON-BAD-TIMEKEEPERS SATISFYING

CONDITIONS (1), (2) OF SECTION VI-E.

lines on the offset plot represent NTP’s default panic threshold
(1000 sec) and ‘STEP’ threshold (125 ms). We also plot jitter ψ
(equation (3)) computed by the client from its eight most recent
offset samples. Recall that the client will only synchronize
to the server if ψ < 1 sec (Section V-E,VI-D). Before the
attack begins, the client and server are synchronized and offset
is small. Once the attack begins, offset jumps to about 600
seconds (10 minutes). Figure 8 also shows some spikes where
the offset jumps back down to a few msec. These spikes occur
during cache misses, when our attacker fails to plant fragments
with the right IPID in the fragment buffer; this allow the
two legitimate fragments to reassemble so that the client gets
sample of the correct time. The attacker pays a price each time
a cache miss causes an inconsistency in the offset values; for
example, at time 25 mins, the attacker crafts enough packets
to force the jitter to about 10 sec, but two samples later it
suffers a cache miss, causing jitter to jump to about 200K sec.
Eventually, the attacker crafts enough packets to keep jitter
below 1 sec for some period of time, and the client accepts
the time, enters ‘STEP’ mode, and clears its state. Once in
‘STEP’ mode, the attacker manages to craft nine consecutive
packets, causing jitter to drop below 1 sec and sending the
client back in time for another 24 hours.

G. Measuring the attack surface: Servers.

How often are the conditions required for our attack
(Section VI-E) satisfied in the wild? We answer this question
by scanning our dataset of 13M NTP servers (Section III-B)
to find servers satisfying the two conditions for our attack per
Section VI-E: (1) fragmenting to a 68-byte MTU, and (2) using
incrementing IPID. To avoid harming live NTP servers with
this scan, we send only ICMP packets or mode 3 NTP queries
(which do not set time on the server).

Fragmenting to 68-byte MTU. To find NTP servers that frag-
ment packets to a 68-byte MTU, we send each server in our list
(1) an NTP mode 3 query and capture the corresponding NTP
mode 4 response, and then (2) send an ICMP fragmentation
needed packet requesting fragmentation to a 68-bytes for NTP
packets sent to our measurement machine (as per the packet
in Figure 5, where UDP checksum is zero and IPID inside the
ICMP payload is that in the captured mode 4 NTP response),
and finally (3) send another NTP mode 3 query. If the server
fragments the final mode 4 NTP response it sends us, we
conclude it satisfies the first condition for our attack.

Server IPID behavior. Next, we check the IPID behavior of
each server that was willing to fragment to a 68-byte MTU. To
do this, we send each IP five different NTP mode 3 queries,
interleaving queries so that at about 30 sec elapse between
each query to an IP. We then check the IPIDs for the mode
4 responses sent by each IP. If IPID incremented by one
with each query, we conclude the server is vulnerable because
it uses a per-destination-incrementing IPID. Otherwise, we
determine the gap between subsequent IPIDs; if all gaps were
less than a threshold Γ (for Γ = {10, 25, 100, 250, 500}), we
conclude that the server uses a globally-incrementing IPID.
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Results of server scan. Out of the 13M servers we scanned,
about 24K servers were willing to fragment to a 68-byte MTU.
10K of these servers have bigger problems than just being
vulnerable to our attacks: they were either unsynchronized (i.e.,
either stratum 0 or stratum 16) or bad timekeepers (i.e., with
offset θ > 10 sec). However, we did find 13,081 ‘functional’
servers that fragment to a 68-byte MTU. As shown in Table VI,
the vast majority (11,802 servers) of these are vulnerable
to our attack because they use an incrementing IPIDs that
grow slowly within a 30-second window. In fact, most use
a globally-incrementing IPID, which is easier to attack than a
per-destination IPID (see Section VI-D).

Who are these vulnerable servers? The majority 87%
(10,292 servers) are at stratum 3, but we do see 14 vulnerable
stratum 1 servers and 660 vulnerable servers with stratum 2.
Indexing these with our (very incomplete) topology data, we
find that 11 of these servers are at the root of subtrees with
over 1000 clients, and 23 servers have over 100 clients. One
vulnerable stratum 2 server, for example, is in South Korea
and serves over 19K clients, another with over 10K clients is
in a national provider in the UK, one with over 2K clients
serves a research institute in Southern Europe, and two with
over 7K clients are inside a Tier 1 ISP.

When we cross-reference these servers to our rv data from
May 2015, we find that the vast majority (9,571 out of the
11,803 vulnerable servers) are running Linux 2.2.13; the other
significant group is 1,295 servers running some version of
“SunOS”. We note that not every Linux 2.2.13 server in our
rv dataset fragmented to a 68 byte MTU; 688 of the servers
running on Linux 2.2.13 in our rv data responded to our final
NTP query with an unfragmented NTP response, even though
they had been sent a valid ICMP fragmentation needed packet,
possibly because of middleboxes that drop ICMP packets.

H. Measuring the attack surface: Clients.

Determining how many clients in the wild satisfy the third
condition of our attack per Section VI-E was a significantly
more complex enterprise. To measure how an NTP client
reassembles overlapping IPv4 fragments, we can use [49],
[60]’s technique of sending fragmented ping packets. To check
for reassembly per Outcome A in Figure 7, we send four
ping fragments with offsets corresponding exactly to those in
Figure 6. If the server reassembles them as in Outcome A, the
reassembled ping packet will have a correct ICMP checksum
and elicit a ping response from the server; otherwise, the server
will ignore them. Figure 9 shows the four ping fragments and
how they would be reassembled per Outcome A. We repeat
this with four other ping fragments to check for Outcome B.

Before we could deploy this technique in the wild, we
hit an important complication: Teardrop [9], an ancient im-
plementation bug (from 1997) with devastating consequences.
In a teardrop attack, the attacker sends two overlapping IPv4
fragments to an OS, and the OS crashes. Most OSes were
patched for this over fifteen years ago, but some firewalls and
middleboxes still alarm or drop packets when they see overlap-
ping IPv4 fragments. Worse yet, legacy operating systems may
not be patched, and new IP stacks might have reintroduced
the bug. This is a big problem for us: this measurement
technique inherently requires overlapping IPv4 fragments, and
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Fig. 9. Ping packets for measuring fragmentation reassembly policies.

thus inherently contains a teardrop attack. We therefore cannot
run this measurement on all 13M NTP servers we found in the
wild, since we don’t know what OSes they might be running.
Instead, we deal with this in two ways.

First, we have developed a website that allows operators
to check if their own NTP clients could be vulnerable to
our attack because they reassemble packets as in Outcome
A. (https://www.cs.bu.edu/∼goldbe/NTPattack.html) To pre-
vent the site itself from becoming a teardrop attack vector,
we require users running the measurement to be on the same
IP prefix as the measured NTP client.

Second, we can send our measurements to NTP servers that
we know are patched for Teardrop. Teardrop affects version of
Linux previous to 2.0.32 and 2.1.63 [9]; thus, we can use the rv
data from the openNTPproject to determine which servers are
running patched Linux versions, and send our measurements to
those servers only. We did this for 384 servers that responded
to rv queries with “Linux/3.8.13”, a kernel released in May
2013, well after Teardrop was patched. Five servers responded
with pings reconstructed as in Outcome A, 51 servers with
pings reconstructed as in Outcome B.

This is interesting for two reasons. Most obviously, this
gives evidence for the presence of reassembly per Outcome
A in the wild, which means there are NTP clients that
are vulnerable to our attack. But it also suggests that this
fragmentation reassembly is not always done by the endhost
itself; if it had, all 384 servers would have responded in the
same way. Thus, we speculate that these five servers responded
to our ping because they were sitting behind a middlebox that
performs fragment reassembly for them [10].

I. Recommendations: Fragmentation still considered harmful.

Our measurements suggest that the attack surface for our
NTP fragmentation attack is small but non-negligible. Thou-
sands of NTP servers satisfy the conditions required by our
attack (Section VI-E). However, our attack only succeeds if
the victim client is synchronized to a vulnerable server, and
reassembles fragmented packets according the third condition
required for our attack (Section VI-E). Unfortunately, we could
not safely measure which NTP clients reassemble packets in
this way, although we do find evidence of vulnerable clients.

Perhaps the simplest way to protect the NTP ecosystem is
to ensure that any OS running an NTP server does not fragment
packets to a 68 byte MTU; indeed, many OSes already do
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this (e.g., Linux [58], Windows [39]). On the client side,
the OS should drop overlapping NTP fragments, as should
middleboxes that reassemble IPv4 fragments like [10].

One might naturally wonder whether our attack is thwarted
by UDP source-port randomization. (That is, what if the client
chose a random 16-bit value for the UDP source port [33],
instead of always setting it to 123?) Unfortunately, the attacker
may still be able to use IPv4 fragmentation to circumvent
this defense, even without knowing the source port. Suppose
conditions (1), and (2) of Section VI-E hold, and consider
modifying our attack as follows: replace the first spoofed
fragment on the left of Figure 6 with an identical fragment that
has its UDP source port and destination port fields sliced off.
(The replacement fragment has fragment offset of 24 bytes.)
Then, if the client reassembles the packet according to the
‘First’ policy of [60], then the packet will look just like the
one reassembled per Outcome A in Figure 7, except with the
legitimate UDP source/dest ports, and the attack will succeed.
Thus, while UDP source-port randomization raises the bar for
our attack, we do not consider it to be a sufficient defense.

VII. RELATED WORK

NTP security. While NTP-based DDoS amplification attacks
have generated widespread interest (see e.g., [13]), there is
less research [12], [27], [42], [44], [59] on the implications
of shifting time via NTP attacks. A few researchers [42],
[44], [59] have considered on-path attackers that intercept NTP
traffic; we have presented new on-path and off-path attacks that
exploit protocol vulnerabilities in NTP. Complementary to our
work are efforts to identify software bugs in ntpd [48], [56];
because ntpd typically operates as root on the host machine, we
expect that interest in this area will only continue to increase.
Finally, our work is also related to older NTP measurement
studies [43], [46], as well as the recent work of [13]; while [13]
looked at DDoS attacks, we focus on the integrity of timing
information and vulnerabilities identified by our attacks.

IPv4 Fragmentation. Our work is also related to research
on exploiting IPv4 packet fragmentation for e.g., off-path
attacks on operating systems [9], DNS resolvers [24], TCP
connections [18], [20], and to evade intrusion detection sys-
tems [6], [49], [54], [60] and exploit side channels [28]. Unlike
most prior work, however, we had to use fragmentation to
craft a stream of self-consistent packets, rather than a single
packet. Our attack also exploits problems with overlapping
IPv4 fragments [6], [49], [60] and tiny IPv4 fragments, and
should provide some extra motivation for OSes/middleboxes to
drop tiny/overlapping fragments, rather than reassemble them.

VIII. CONCLUSION

Our results suggest four ways to harden NTP:

1) In Section IV we discuss why freshly-restarted ntpd
clients running with the -g configuration (which is the default
installation for many OSes) are vulnerable to quick time
shifts of months or years. We also present a ‘small-step-big-
step’ attack, captured in CVE-2015-5300, that allows an on-
path attacker to stealthily shift a time on a freshly-restarted
ntpd client. Different versions of the small-step-big-step attack
succeed on ntpd v4.2.6 and ntpd v4.2.8. To protect against
these attacks, users can either stop using the -g configuration,

or monitor their systems for suspicious reboots of the OS or of
ntpd. Section IV-C also has recommendations for implemen-
tors that wish to patch against our small-step-big-step attack.

2) We showed how NTP’s rate-limiting mechanism, the
KoD, can be exploited for off-path denial-of-service attacks on
NTP clients (Section V-C). ntpd 4.2.8p3, the current reference
implementation, is vulnerable to an extremely low-rate version
of this attack (requiring about 1 packet per pre-configured
server) by spoofing KoD packets. This attack has been cap-
tured in CVE-2015-7704. Moreover, even if we patch the
vulnerability that allows KoD packets to be spoofed, we show
that an off-path attacker can still to launch denial-of-service
attacks using a ‘priming the pump’ technique (Section V-B).
This attack has been captured in CVE-2015-7705. As we
argue in Section V-G, we believe that NTP should either (1)
eliminate its KoD functionality, (2) require NTP clients to
cryptographically authenticate their queries to NTP servers,
or (3) adopt more robust rate limiting techniques, like [65].

3) In Section VI we showed how off-path attacker can use
IPv4 fragmentation to hijack an NTP connection from client to
server. Because our attack requires server and client to run on
operating systems that use less-common IPv4 fragmentation
policies, we have used a measurement study to quantify its
attack surface, and found it to be small but non-negligible.
As we argue in Section VI-I, NTP servers should run on
OSes that use a default minimum MTU of ≈ 500 bytes, as
in recent versions of Linux and Windows [39], [58]. OSes and
middleboxes should also drop overlapping IPv4 fragments. We
have also set up a website where operators can test their NTP
clients for vulnerability to our fragmentation attacks.17

4) Each of our attacks has leveraged useful information that
clients leak in the reference ID field of their mode 4 response
packets (Figure 1). Moreover, clients typically send mode 4
responses in response to any mode 3 query sent by any IP in the
Internet. (In Section IV, we use the fact that reference ID leaks
that the client was in the ‘INIT’ or ‘STEP’ state. In Section V-C
our off-path attacker used the reference ID field to learn the IPs
of client’s servers.) Thus, it would be worthwhile to consider
limiting the information leaked in the reference ID field. In
fact, RFC 5905 [41, pg 22] already requires IPv6 addresses to
be hashed and truncated to 32 bits before being recorded as a
reference ID. Of course, this approach is vulnerable to trivial
dictionary attacks (with a small dictionary, namely, the IPv4
address space).

There are more robust ways to obfuscate the reference ID.
Indeed, the primary purpose of the reference ID is to prevent
timing loops, where client A takes time from client B who
takes time from client A [63]. One idea is to use a salted
hash,, in an approach analogous to password hashing. Upon
sending a packet, client A chooses a a fresh random number
as the ‘salt’, includes the salt in the NTP packet (perhaps as
the lower-order bits of the reference timestamp (Figure 1)), and
sets the reference ID in the packet to Hash(IP, salt), where IP
is the IP address of the server B from which A takes time.
B can check for a timing loop by extracting the salt from the
packet, taking B’s own IP, and checking that Hash(IP, salt)
matches the value in the packet’s reference ID; if yes, there is
a timing loop, if no, there is not. This approach requires no

17https://www.cs.bu.edu/∼goldbe/NTPattack.html
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state at A or B, and de-obfuscating the IP requires an attacker
to recompute the dictionary for each fresh salt. This approach,
however, comes with the caveat that an committed attacker
could still launch dictionary attacks on the salted hash.

Our work may also motivate the community to take another
look at cryptographic authentication for NTP [21], [44], [55].
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