
Detecting packet injection: a guide
to observing packet spoofing by

ISPs

NOVEMBER 27, 2007 eff.org

Introduction

Certain Internet service providers have begun to interfere with their users'
communications by injecting forged or spoofed packets - data that appears to
come from the other end but was actually generated by an Internet service
provider (ISP) in the middle. This spoofing is one means (although not the only
means) of blocking, jamming, or degrading users' ability to use particular
applications, services, or protocols. One important means of holding ISPs
accountable for this interference is the ability of some subscribers to detect and
document it reliably. We have to learn what ISPs are doing before we can try to
do something about it. Internet users can often detect interference by
comparing data sent at one end with data received at the other end of a
connection.

Techniques like these were used by EFF and the Associated Press to produce
clear evidence that Comcast was deliberately interfering with file sharing

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

1 of 23 2/12/23, 06:01

https://www.eff.org/deeplinks/2023/02/podcast-episode-when-tech-comes-town
https://www.eff.org/deeplinks/2023/02/podcast-episode-when-tech-comes-town


applications; they have also been used to document censorship by the Great

Firewall of China. 1 In each of these cases, an intermediary was caught injecting
TCP reset packets that caused a communication to hang up - even though the
communicating parties actually wanted to continue talking to one another. In
this document, we describe how to use a network analyzer like Wireshark to
run an experiment with a friend and detect behavior like this. Please note that
these instructions are intended for use by technically experienced individuals
who are generally familiar with Internet concepts and are comfortable
installing software, examining and modifying their computers' administrative
settings, and running programs on a command line.

Requirements

Making use of these techniques requires some general understanding of
Internet technology and some technical expertise. If you don't understand the
process, you may not produce meaningful evidence about what your ISP is
doing. Although we have attempted to explain most of the network concepts
and principles involved, it may prove helpful to have read at least one technical
book or web site about the TCP/IP protocol suite before beginning.

The test described here must be performed in conjunction with a friend who is
using a di�erent Internet connection (and therefore is probably in a di�erent
location). Both you and your friend must have a good understanding of the
process described here; this test relies on comparing observations made at two
di�erent locations in order to find di�erences between them, so it would not be
meaningful if performed by one party alone. Therefore, these instructions are
primarily useful for testing peer-to-peer applications or applications for which
you can run your own server. It is therefore di�cult to confirm if an ISP is
blocking a third-party service like Google unless the operator of that service is

interested in participating directly in the tests. 2

The tests described here are most relevant as a means of debugging a specific
observed and reproducible problem (for example, an inability to connect to
another party) rather than as a speculative means of investigating ISP behavior.
This is primarily because of the limitations of tools to automate the process of
comparing packet traces from two ends of a connection. Traditionally, this
comparison had to be performed by hand, which can be a quite laborious
process if one isn't looking for anything in particular. EFF has begun to develop
tools to automate this process so that large packet traces can be compared
automatically and packet injection can be detected even when it is not

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

2 of 23 2/12/23, 06:01

https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes


specifically suspected.

Each party participating in the experiment must have all of the following:

• a computer capable of running Wireshark, with appropriate privileges to
install and run it;

• the ability to connect this computer directly to the Internet, with a
public IP address, outside of any firewalls (for example, not via a typical
home wireless router);

• the ability to determine the computer's public IP address;
• the ability to disable any firewall software running on the computer

itself;
• some application to test, and the ability to configure that application to

communicate directly with the other party (by IP address).

A note on privacy

Using a packet sni�er can capture all of the tra�c passing by your computer
(including all of your communications, and potentially communications of
other users on the same network); if your computer is connected to a wireless
network, for example, the packet sni�er may record everything you do and
everything everyone else on the wireless network does on-line. Please do not
record other people's communications without their consent. Doing so is
impolite and, under some circumstances, may be prohibited by law. One way to
avoid recording third parties' communications is to avoid using promiscuous
mode for your packet capture, unless you specifically need it.

If you produce a capture file (packet trace) with evidence of the results of your
experiment, please be aware that the capture file will reveal your IP address,
the IP address of the other person involved, and a complete record of
everything you did on-line during the course of the experiment. For example, if
you downloaded a file, the packet trace will typically reveal which file (and even
include the full contents of that file). If you browsed the web or checked your
e-mail while the packet sni�er was running, the identities and contents of web
pages you visited and e-mail messages you downloaded may appear in the
packet trace. In addition, any HTTP cookies sent by your browser (which might
include your username and password for web sites you visited!) will be included
in the trace. You should exercise caution when publishing or sharing a packet
capture file to ensure that you don't reveal more information than you
intended.

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

3 of 23 2/12/23, 06:01



Theory

The traditional Internet architecture is characterized by an end-to-end design
in which ISPs passively forward unmodified packets from one user to another.
This means that, in the best case, every packet sent by one user should be
received as an identical packet at the other end. There are several reasons that
this ideal might not be attained even in the absence of packet injection by ISPs:

Fragmentation.

The Internet Protocol standard permits ISPs to fragment
packets that are too large (for example, because a particular
network technology used by an ISP has a maximum packet
size). The packets are then broken up into smaller fragments
which arrive separately at the destination; the destination
computer is responsible for reassembling the fragments.
Fragmentation has become somewhat less common in

practice for reasons that may include conservative packet size defaults in
operating system network code and mechanisms like path MTU discovery (to
automatically select a packet size that is small enough to avoid fragmentation).
In test results we've seen so far, fragmentation generally did not occur, and we
will ignore this possibility here, although it should be considered as a possible
cause of any observed discrepancies between packets sent and received.

Packet loss.

Under conditions of network congestion, it is normal for
some packets to be discarded rather than forwarded, a
phenomenon called packet loss. Packet loss is normally
measured as a percentage; the ping utility measures packet
loss with ICMP echo request packets, counting how many
ICMP echo replies are received in response to a certain
number of probes. High rates of packet loss could be caused

intentionally by an ISP as a means of reducing the performance of a targeted
application or protocol, but they can also occur as a result of congestion on the
network or other technical problems. When a packet is lost (also called a
"dropped packet", "dropped frame", or "dropped segment"), it is not received
by the destination at all. Some higher-level Internet protocols include
mechanisms for coping with packet loss, such as TCP's mechanism for

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

4 of 23 2/12/23, 06:01



explicitly retransmitting data from packets that are lost.

Reordering.

Sometimes packets are not delivered in the same order in
which they were originally transmitted. If packet B was
transmitted after packet A, receiving packet B at the other
end does not mean that packet A has been dropped; it might
still be on its way. TCP can also generally correct for
reordering. Like packet loss, reordering could be used
intentionally by an ISP to degrade an application, but also

occurs normally in the course of Internet routing.

Spoofing.

Spoofing or packet injection occurs when an entity other
than one of the endpoints generates tra�c using the source
address of an endpoint. Spoofing is the most
straightforwardly detectable means of interference with
Internet tra�c because it produces concrete evidence in the
form of the anomalous spoofed packets, and because it does
not occur normally in traditional Internet routing.

Spoofing can be detected by looking for packets that were received by one end
but never sent by the other end. If user B receives a packet apparently from user
A that user A has no record of having sent, user B can conclude that someone in
between the two has spoofed this packet. The remainder of this article describes
the means of collecting packet traces to allow the packets actually transmitted
between two users to be compared in this way.

Spoofing need not involve preventing or blocking communications; it could also

involve changing their content, as with a transparent proxy. 3 Some ISPs have
been experimenting with modifying HTML in third-party web pages on the fly
in order to inject advertising. Here is a recent real-world example:

In this image supplied by Chris Palmer, a wireless ISP has modified the source

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

5 of 23 2/12/23, 06:01

https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/files/images/issues/testyourisp/google_shot_big.jpg
https://www.eff.org/files/images/issues/testyourisp/google_shot_big.jpg


code of Google's home page to add its own advertising, presumably by spoofing
packets with a transparent HTTP proxy. Although similar behavior often results
from adware, in this instance Palmer verified that the ISP was at fault by

installing a fresh instance of Windows inside a virtual machine. 4

Setup

Step 1. Install Wireshark

Download a copy of Wireshark for your platform from the Wireshark home page
at http://www.wireshark.org/. (Wireshark is also prepackaged for most Unix-
like operating systems and may be available from your distributor's package
repository. In older operating system releases, it may still be packaged under its
former name, Ethereal.) Install Wireshark and make sure that you can run the

program. 5

Step 2. Connect directly to the Internet

In order to obtain the most valid and conclusive results, we strongly
recommend that your computer be directly connected to the Internet, with a
globally-valid public IP address, without any firewalls or network address
translation (NAT) routers. Performing these tests from behind NAT could
produce valid results but creates some uncertainty about whether unexpected
network behavior is due to an ISP or a local NAT router. A public IP address is
one that another party can use directly to communicate with you without the

need to configure a tunnel or firewall rule or use a proxy to connect. 6

If you are using an institutional network connection, such as at a school or
business, that has a firewall that you are not permitted to disable, you may still
be able to perform these tests, but any packet spoofing you detect may be a
result of your institution's firewall rather than its upstream ISP connection. As
we describe below, observing packet spoofing shows that someone is doing it,
but does not directly reveal who. We want to reduce the number of possible
responsible parties.

Therefore, before beginning the test, disable any firewalls and NATs located
between your computer and the Internet - including both software or
"personal" firewalls running on your computer and firewall appliances or
firewall functionality in routers. As an alternative, connect your computer to a

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

6 of 23 2/12/23, 06:01

https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes


point on the network located outside of any firewalls or NAT routers (for
example, by directly connecting it to a cable modem or DSL modem). Some
network designs and documentation refer to this location as a DMZ.

Step 3. If possible, disable TCP and UDP checksum

offloading and TCP segmentation offloading

Checksum o�oading (sometimes called "TCP checksum o�oading", although
UDP checksums may also be o�oaded) is a feature of some recent Ethernet
cards, particularly Gigabit Ethernet-capable cards, that allows the Ethernet
card to construct portions of some network packets in hardware, saving load on
the CPU. However, the use of checksum o�oading makes packet captures
inaccurate because it prevents the local operating system from seeing what was
actually transmitted. This may cause a discrepancy since one end mistakenly
thinks it sent something slightly di�erent from what the other end correctly
received; the resulting mismatch of TCP or UDP checksum values could be
misinterpreted as tampering by an ISP, since ISPs are not supposed to alter
these checksums. Checksum o�oading should, if possible, be disabled at both
ends before beginning the experiment. If you know that your Ethernet card or
network driver does not perform checksum o�oading, you do not need to
disable it. It may also be possible to get valid results when checksum o�oading
is enabled; workarounds for this purpose are described in a later section. Here
are typical means of disabling checksum o�oading on several popular
operating systems:

On Linux (as root):

ethtool -K eth0 rx o� tx o� (choose correct network interface if not eth0)

On FreeBSD (as root):

ifconfig em0 -rcxsum -tcxsum (choose correct network interface if not em0)

On MacOS (as root):

sysctl -w net.link.ether.inet.apple_hwcksum_tx=0

sysctl -w net.link.ether.inet.apple_hwcksum_rx=0

(Note that this may cause some local applications to work incorrectly!)

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

7 of 23 2/12/23, 06:01



On Windows

Right-click My Computer, then select Device Manager / Network Adapters /
(select device) / Properties / Advanced; then disable checksum o�oading, if the
option is available.

For general information about checksum o�oading and why it can cause errors
when capturing packets, see http://www.wireshark.org
/docs/wsug_html_chunked/ChAdvChecksums.html
and http://www.wireshark.org/faq.html#q11.1. Note that the approach
suggested there of disabling TCP checksum verification in Wireshark does not
help for our purposes, because we want to compare packets; having TCP
checksums that are di�erent across capture files will still appear as a
discrepancy between those capture files even if the checksums' values are never
verified.

If your system performs checksum o�oading and you are unable to disable it,
other options are available. The pcapdi� program described below allows you to
ignore TCP and UDP checksum values entirely, in case you have reason to
believe that checksum o�oading is in use. You can also perform the capture on
a separate machine distinct from the computer that is generating the test
tra�c - as long as it is connected to the same local area network and is able to
see the tra�c passing by. In this case, the capture should be performed in
promiscuous mode (see footnote 3 above) and, on a network used by multiple
people, extra care should be taken to avoid capturing other users'
communications without their knowledge.

Another form of o�oading that can cause packet capture accuracy problems is
TCP segmentation o�oading, also known as large segment o�oad. In TCP
segmentation o�oading, an Ethernet card, rather than operating system
software, splits a large TCP packet into multiple TCP packets. This can cause a
serious discrepancy in the number of packets a host believes it transmitted as
against the number of packets it actually transmitted; since packets are split up
by the network card in a way invisible to the sender's operating system, every
TCP packet large enough to be split may appear to be "forged", since the sender
will have no record of having sent any of the received packets in the form in
which they were received. TCP segmentation o�oading should also be disabled
if your system uses it. pcapdi�, for example, is not able to ignore TCP
segmentation discrepancies in the same way that it can ignore TCP and UDP
checksum mismatches. See http://www.inliniac.net/blog/2007/04/20
/snort_inline-and-tcp-segmentation-o�oading.html for a discussion of TCP
segmentation o�oading's consequences for packet sni�ng, and information

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

8 of 23 2/12/23, 06:01



about disabling it on Linux. In general, the validity of the results of packet
capture experiments will be improved by disabling all available o�oading
features.

Step 4. Determine local IP address

Next, determine the IP address of your computer. You can obtain this locally
from your computer's network configuration tools, and you can also obtain it
from a web site such as http://whatismyipaddress.com/ or
http://www.whatismyip.com/, which displays the IP address from which it is
being accessed. Use both methods to ensure that you are really directly
connected to the Internet and not using a proxy server or NAT connection. (If
you are not using NAT, your computer's locally-configured IP address should
be identical to the IP address seen by web sites and other Internet users. If they
still disagree, it's possible that your ISP or institutional network is forcing all
users to use NAT or a proxy, rather than providing direct access to the
Internet.)

From here on, we will suppose that your IP address is 12.13.14.15 and that the IP
address of the person at the other end is 4.8.16.32. You should replace these

example addresses with the real IP addresses involved. 7

Step 5. Confirm IP addresses and test connectivity

To ensure that both you and the person at the other end have correctly
determined your IP addresses, try to perform some operation that allows you to
communicate with one another by specifying each other's IP addresses. You
could use the ping command or try the application that you eventually plan to
test out, such as a P2P file-sharing client or VoIP application. If you can't
establish some kind of end-to-end communication using the IP addresses
you've determined, you'll need to debug this problem before proceeding any
further. Possible causes could include the presence of a firewall, including a
software firewall, that has not yet been disabled at one end.

Step 6. Synchronize computer clocks

If your operating system supports it, make sure that your computer's clock is
synchronized to an authoritative Network Time Protocol (NTP) network time
server, so that the dates and times recorded in your packet capture will be
accurate and will correspond to those recorded by the other computer. This will
help make results or log entries from multiple computers easier to compare.

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

9 of 23 2/12/23, 06:01

https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes


Running the test

Start Wireshark (with administrative privileges, e.g. root privileges, su�cient

to perform a raw packet capture 8). Select "Interfaces" from the "Capture"
menu. Choose the interface corresponding to the network device you will use to
capture packets; the IP addresses bound to all available network interfaces are
displayed, which may help you distinguish them if you are unsure which
network interface is which. Click the Options button for the correct interface.

In the Capture Options dialogue, ensure that the IP address you expected your
computer to be using is displayed in the "IP address" field. We recommend
setting a capture filter to ensure that only packets directly to or from the other
computer will be captured. If the other computer's IP address is 4.8.16.32, a
suitable capture filter string is "host 4.8.16.32". We also recommend setting
"Update list of packets in real time" and "Automatic scrolling in live capture",
which help you watch the capture process while it's underway, unless your
computer is too slow.

When you're ready to begin capturing packets, click the Start button. If you've
set a capture filter to limit capturing to tra�c to or from the other computer,
you will probably not see any packets appear in the capture until you
deliberately generate some tra�c between the two computers. To ensure that

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

10 of 23 2/12/23, 06:01

https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes


the tra�c is showing up, you should ensure that Wireshark packet captures are
running at both ends, and then have one computer ping the other computer by
IP address. This generates a steady stream of ICMP echo request and echo reply
packets. Current Unix, Windows, and MacOS operating systems all allow you to
start the ping process by typing ping 4.8.16.32 at a terminal (command-line)
prompt. (On some systems, the ping will stop automatically after a
predetermined number of pings; on others, you can interrupt it by pressing
Ctrl+C.)

If both ends of the connection are capturing data, the ICMP packets that
represent ping requests and replies should appear in the Wireshark window at
each end. These packets should be identical at the IP layer and - unless the ping
utility itself reported packet loss - there should be an identical number of
packets seen from both ends. This test will show if the capture process is set up
and working properly.

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

11 of 23 2/12/23, 06:01



Here, we see how the capture process appears at both ends following a large
number of ping requests from 12.13.14.15 to 4.8.16.32. The packets displayed
agree one-to-one (as could be verified by looking more closely at the packets'
contents than we do here); there are no dropped packets and no spoofed
packets. (Note that you can't see this view from both ends in real-time; this
screen shot was created after the fact by copying a saved capture file from one
computer onto another. While the capture is running, each party sees only one
of the two windows displayed here; in order to verify that the packet captures
correspond properly while they're in progress, you'll need to use some other
means of communication to talk to the person at the other end, such as a
telephone or instant messaging application. You'll use this channel to
coordinate your activities and to compare notes.)

Once you're confident that both computers are talking to each other over the
Internet correctly and are saving a valid packet trace, you can begin to gather
experimental data about whatever application is of interest to you - or try to
reproduce any reported or conjectured errors or problems. For example, for our
tests with Comcast, we configured one of the computers as a BitTorrent tracker
and seeder and gave the other computer a BitTorrent file instructing it to
attempt to download the file hosted by the first computer. The details of what
you'll test depend on what you're interested in and will require you to be
familiar with the application you're testing in some detail. (In the BitTorrent
example, it's not su�cient simply to have both parties start running BitTorrent
at this point; rather, one computer needs to be configured explicitly to o�er a
download to the other computer, which, in turn, needs to be configured to
request a download from that computer.)

When your experiment is complete, you should stop the capture and save the
resulting capture files to disk. You can then exchange these files with the
person at the other end - by e-mail, for instance. Wireshark can be used to
open and display a saved capture file generated on another computer.

There are many other network analyzers or packet sni�ers that could be used
instead of Wireshark. We have chosen to describe Wireshark because it is
powerful, user friendly, open source, and available for several platforms. As
long as the network analyzer you use can save its packet traces in pcap format,
they can be read by a wide variety of software, including Wireshark; thus,
meaningful and comparable results could be obtained using other software. If
you're capturing packets on a device that can't run Wireshark - such as a
remotely-accessible server in a colocation facility with no graphical user
interface - you should consider the tcpdump program, which is a standard part

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

12 of 23 2/12/23, 06:01



of many Unix-like operating systems and is available at
http://www.tcpdump.org/.

It is important to be aware that some network analyzers default to capturing
only a portion of each packet. Wireshark's option to "Limit each packet to 68
bytes" in the screen capture above is (correctly) disabled by default, but the
corresponding option in some other programs could be (wrongly) enabled by
default. To meaningfully compare the resulting packet traces, the packet size
limit should be set to the largest possible value (usually 65535 bytes) or
disabled entirely. For example, using the tcpdump utility, an appropriate
command line would be

tcpdump -v -s 0 -w packet-trace.pcap

Setting -s 0 sets the packet size limit to "unlimited" instead of tcpdump's
default of 68 bytes. (When running tcpdump on a computer with multiple
network interfaces, it may also be necessary to specify a network interface with
the -i option.)

Interpreting the results

As we described above, packet trace files generated on
separate machines that were communicating directly
with one another can be compared to see how packets
sent by each computer correspond to packets received
by the other computer. Since a simple file transfer or
VoIP conversation could generate thousands of
packets, the lack of automated tools to perform this
comparison can make the process tedious. We intend

to collaborate with other interested parties to produce such comparison tools in
the near future, enabling much larger data sets to be analyzed quickly for
spoofed packets, even where specific sorts of spoofing are not suspected. Here
are a few tips for comparing packet traces by hand:

• Spoofed packets may correspond to protocol errors or extreme delays
reported or observed in application software; for example, if a client
program gives an error like "Connection reset by peer", "Connection
closed by foreign host", "Lost connection", etc., or data rates suddenly

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

13 of 23 2/12/23, 06:01



drop, packet spoofing may have occurred. Noting the timing of
suspicious errors may provide guidance for where to look for spoofed
packets in a packet trace file.

• Spoofed packets used to disrupt connections are often TCP segments
with the FIN or RST flags set (also known as "FIN packets" and "RST
packets"); each of these flags indicates that a computer does not want to
continue a TCP conversation. Wireshark can be configured to color these
packets di�erently so that they stand out in a packet display. Keep in
mind that there are legitimate uses for FIN and RST packets within the
TCP standards and that the presence of forged FIN or RST packets, not
the presence of such packets generally, is suspicious. (A client software
or firewall bug, for example, could cause one end of a connection to
disconnect prematurely - but that isn't the ISP's fault!)

• If a problem you're investigating is widespread, someone may already
have published claims about precisely when or under what
circumstances spoofed packets may appear; you can consult the details
of other people's allegations to see whether you can reproduce these
claims for yourself.

Setting aside the possibility of fragmentation, we have explained that packets
are spoofed when they are received by one computer but were not transmitted
by the other computer. Below, we give examples of summary views showing a
BitTorrent transfer disrupted by TCP RST spoofing:

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

14 of 23 2/12/23, 06:01



Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

15 of 23 2/12/23, 06:01



Before the RST packets begin (packet no. 2338 in the local capture and packet

no. 2549 in the remote capture 9), the packets transmitted and received
correspond directly to one another (although they appear in rather di�erent

orders). 10 Once the RST packets begin, a large number of packets are received
at each end that do not correspond to packets transmitted at the other end. We
can verify this by looking at the detailed contents of these packets (for example,
their sequence numbers, which are displayed by Wireshark as Seq=nnnnn),
although simply counting them tells the tale in this case. The local machine,
with IP address 12.13.14.15, reported transmitting a total of five RST packets to
the remote machine at 4.8.16.32 (packet nos. 2340, 2342, 2346, 2350, and
2354), while it reported receiving 13 such packets from 4.8.16.32 (packet nos.
2338, 2339, 2343, 2344, 2347, 2348, 2351, 2352, 2355, 2356, 2357, 2358, and
2359). The remote machine, with IP address 4.8.16.32, reported transmitting
only a single RST packet (packet no. 2560) while it believes it received 17 RST
packets from 12.13.14.15 (2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557,
2558, 2561, 2562, 2563, 2564, 2565, 2566, 2567). Evidently, many of the RST

packets received by each machine did not actually originate from the other. 11

The result of these RST packets in this case was that the BitTorrent session
stopped and did not resume for around four and a half minutes. (A new TCP
session is established with the characteristic SYN and SYN/ACK packets at local

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

16 of 23 2/12/23, 06:01

https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes


capture packet nos. 2446 and 2447, which correspond to the remote capture's
packet nos. 2578 and 2579.)

Wireshark provides the ability to view not only a packet summary list like the
lists displayed above but also the sequence of bytes that comprise each
individual packet, as well as a dissector view which shows what the packet's
contents actually mean from the point of view of various Internet protocol
layers. A careful examination of this evidence could involve a byte-for-byte,
packet-for-packet comparison to determine exactly which packets were
spoofed. If one is performing such a comparison, it is important to appreciate
that Wireshark captures more than just the IP packets that get transmitted over
the Internet; each IP packet is typically captured wrapped inside a link-layer
header (often referred to as an Ethernet frame header or Ethernet packet header
on an Ethernet-style network, including a wired Ethernet or wifi network).
Link-layer headers are used to communicate between computers on the same
local Ethernet network and are discarded and regenerated whenever a packet is
forwarded through any router. Thus, there is no reason to expect link-layer
headers to correspond between two packet traces unless those packet traces
were captured on the same physical local-area network. When manually
performing a detailed packet comparison, packets should be considered "the
same" if the Internet Protocol headers and payload match up; the link-layer
headers can simply be ignored because they were never forwarded over the
Internet.

Even some discrepancies between IP headers are to be expected; for example,
the Time-To-Live (TTL) field is supposed to be decremented by each router
that forwards a packet, so the TTL value when a packet is received should
always be smaller than the original TTL value when it was transmitted.
Similarly, the IP checksum field that indicates whether a packet's IP headers
were transmitted without error has to be recalculated each time the packet is
forwarded, because the TTL value has changed. There are also other
circumstances in which an ISP's routers may, consistent with Internet protocol

standards, legitimately alter other fields in the IP headers. 12

On the modern Internet, there are usually several ISPs involved in forwarding
packets from their source to their destination. As a technical matter, any of
these ISPs has the ability to spoof (or drop) packets. Detecting the presence of
spoofed packets, then, does not directly reveal or conclusively establish which
ISP was responsible for injecting them. To find out which ISPs were involved in
the process of forwarding packets from one computer to another, one can use
the traceroute tool or any of its descendants or variants. (On Unix and MacOS,

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

17 of 23 2/12/23, 06:01

https://www.eff.org/wp/detecting-packet-injection#footnotes
https://www.eff.org/wp/detecting-packet-injection#footnotes


the command-line version of this tool is generally called traceroute; on
Windows, it is known as tracert.) This tool is run with a host name or IP
address as its argument and experimentally determines the path probably
followed by probe packets, displaying a list of the routers in between the local
computer and target computer. In order to establish which ISP is responsible
for packet spoofing, one could try experiments with a wide variety of ISPs in
order to determine if users of one ISP routinely or disproportionately
experience that sort of spoofing; one could also try to enable a virtual private
network (VPN) to hide tra�c from a local ISP, although the details of this
process are beyond the scope of this document.

Using pcap files

As we've described above, packet capture files produced by Wireshark and many
other network analyzer programs are normally in the pcap format (also known
as libpcap format or tcpdump format). This format is an open standard that is
widely understood by network analysis software. If you're certain that a pcap
file or set of pcap files you've made does not contain sensitive personal
information - recalling our earlier warning that it may, by default, contain a
record of all Internet activity your computer performed while the capture was
active - you can c onsider sharing pcap files with an ISP as part of a problem
report or support request, or publishing them on a blog or web site when
documenting a problem you've experienced. These files are concrete, useful
evidence that can help technically knowledgeable people diagnose network
problems and confirm that a problem such as packet spoofing by an ISP is
really occurring.

EFF is developing a tool called pcapdi� to help automate the process of
comparing large pcap trace files that were made simultaneously at each end of
a connection. This automation makes it easier to find packet spoofing or
tampering when one doesn't know what to look for ahead of time and could
make the comparison process less tedious (considering that many
communications involve thousands of packets or more, and not all tampering
will have results as obvious as TCP RST injection). The pcapdi� program is a
command-line utility written in Python which requires exactly two pcap packet
traces; it automatically compares them to find discrepancies indicating dropped
and spoofed packets. You can download pcapdi� from <http://www.e�.org
/testyourisp/pcapdi�>. Your computer must already have the Python
interpreter installed; if not, you can obtain it from http://www.python.org/.

Currently, pcapdi� also requires the pcapy module from
http://oss.coresecurity.com/projects/pcapy.html in order to read pcap files;

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

18 of 23 2/12/23, 06:01

https://www.eff.org/testyourisp/pcapdiff/
https://www.eff.org/testyourisp/pcapdiff/


binary versions of this module are available for Windows and Linux, but it must
be compiled from source code for MacOS. Future versions of pcapdi� may be
able to run without pcapy.

pcapdi� is run from the command line; you must specify two pcap trace files
and the local IP address of the computer where each was captured. In addition
to producing statistics about overall rates of packet dropping and spoofing,
pcapdi� will produce a list of the IP identification field values of each such
packet. This can help you locate packets of interest in a program like Wireshark
much more quickly. For example, if pcapdi� says that a packet with IP
identification value 4321 was spoofed in the outbound direction, you can enter
the display filter ip.id eq 4321 into Wireshark's display filter field and see only
the packet (or packets) with this particular IP identification value. Typically, IP
identification values uniquely identify IP packets transmitted by a particular

computer, although these values will be repeated at least every 65536 (216)
packets.

Observing a very large number of forged packets may suggest that something is
systematically wrong - for example, you may have started or ended the
captures at di�erent times (so that one machine has no record of having sent
many of the packets that it did, in fact, send), you may have limited the number
of bytes captured per packet at one end but not at the other end, you may have
some kind of protocol o�oading active on one end (so that one computer's
operating system is wrong about the contents of the packets that the network
card actually sent over the wire), you might still have NAT or a firewall enabled
at one end of the connection, or your ISP might be forging or altering packets
routinely, perhaps with a technique like transparent HTTP proxying that is
invisible to most application software. It is important to think critically about
the significance of evidence and whether results are reproducible or attributable
to confounding factors. pcapdi� and the techniques described here are meant to
help users find anomalous discrepancies between packets sent and packets
received, not to definitively assign blame for the source of those anomalies.

Learning more about TCP/IP and interpreting network

packet traces

For a deeper understanding of network protocols and packet traces like those
described here, you can consult the Internet standards documents that specify
the TCP/IP protocol suite. Most of these documents have been published in the
RFC document series available at http://www.rfc-editor.org/ and
http://www.faqs.org/rfcs/. For example, the Internet Protocol (IP) is described

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

19 of 23 2/12/23, 06:01



in RFC 791, the Transmission Control Protocol (TCP) in RFC 793, and the User
Datagram Protocol (UDP) in RFC 768.

An excellent guide to the TCP/IP protocol suite in book form is W. Richard
Stevens, TCP/IP Illustrated: Volume 1, The Protocols (Reading, MA: Addison-
Wesley, 1994), ISBN 0201633469. Stevens uses the tcpdump tool to produce
packet traces on 1990s-era Internet-connected networks, and carefully
explains the theory and practice of Internet networking with reference to these
packet traces. Doing the same thing with Wireshark might be clearer today
because Wireshark has a friendlier interface and more extensive protocol
dissection than tcpdump, but Stevens's explanations are clear, thorough, and
generally valid for the Internet of today.

Acknowledgments

Thanks to Chris Palmer and Karl Fogel for their comments.

1 See Clayton, Murdoch, and Watson, "Ignoring the Great Firewall of China"
(available at http://www.cl.cam.ac.uk/~rnc1/ignoring.pdf).

2 If your ISP were blocking Google, you might suspect this when you
encountered di�culty connecting to Google's services - and you might see
apparently anomalous packets in a packet trace from your end. However, only
the addition of a recording of the same interaction from Google's end would
definitively establish whether the problem lay with Google or with an ISP in
between. Otherwise, it is di�cult to tell whether the problem is a result of
ordinary packet loss, a misbehaving computer at Google's end, or even
misbehaving software on your own computer.

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

20 of 23 2/12/23, 06:01



We urge readers to interpret the results of their tests cautiously and avoid
jumping to conclusions or making spurious accusations. For example, RST
packets are a legitimate part of the TCP protocol, and receiving RST packets
does not normally mean that they were spoofed by an intermediary. RST packet
spoofing can only be proven definitively by making simultaneous
measurements at the endpoints of a connection. (Some forms of packet
spoofing could produce suggestive evidence at one end because the spoofed
packets have anomalous properties that make it very unlikely that they were
really transmitted by the other end. But observing these anomalies will
probably not be truly conclusive unless evidence is also gathered at the other
end.)

It would clearly be useful to have a reliable automated means of testing non-
P2P services to detect interference or degradation by ISPs. In some cases this
would just be a matter of writing software, while in other cases it would require
co-ordination among multiple parties (such as Google in the example just
given). For example, it would be helpful to know whether ISPs give users
lower-latency connections to some web sites than to others. Because the web
site operators' co-operation is required for this test, it is beyond the scope of
this article. One test that could be performed readily by two end-users is seeing
whether exchanging the same volume of data with di�erent protocols (for
example, sending a single 1-megabyte file with HTTP, FTP, BitTorrent,
Gnutella, and disguised as a SIP VoIP telephone call data stream) takes
appreciably di�erent amounts of time, and whether the round-trip latency for
each of these protocols is the same or not. This article does not discuss tools
that would help automate such a test. We do discuss our pcapdi� tool below and
also mention the University of Washington research project using JavaScript to
detect some modification of web page contents by ISPs.

3 One Internet user configured his open wireless gateway to modify images
seen by users as they browsed the web, either by mirror-reversing them or
blurring them. See http://www.ex-parrot.com/~pete/upside-down-ternet.html.
It can be easy to forget that Internet intermediaries are able to make arbitrary
changes to their users' view of the Internet.

4 This particular advertising appears to have been added by AnchorFree, one of
several firms experimenting with this means of ad placement; see
http://anchorfree.com/advertisers-agencies/how-it-works/. See also
http://vancouver.cs.washington.edu/ for a research project investigating the
prevalence of this phenomenon.

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

21 of 23 2/12/23, 06:01



5 If you're running Wireshark on the same machine that's generating or
receiving the test tra�c, as we recommend here, you don't need to follow the
additional directions at http://www.wireshark.org/faq.html#promiscsni�
because you won't need to capture tra�c in promiscuous mode. Running
Wireshark in promiscuous mode on a di�erent machine on the same local area
network segment (note: not on an Ethernet switch) could, however, help
mitigate problems with excessive CPU load, with the unavailability of Wireshark
or a suitable packet capture driver for a particular operating system or device,
with TCP or UDP checksum o�oading or large segment o�oading (described
below), or when logging into a remote server by means such as SSH in order to
run tests on that server's communications with your client machine. In this
scenario, the machine capturing packets is not the same machine that
generates them; however, the resulting packet trace can generally be used in
the same way as a packet trace that was captured directly on the machine
generating the packets, as long as the LAN to which the machines are
connected broadcasts all packets to the packet-capturing machine. There are
also techniques for sni�ng tra�c on some non-broadcast switched LANs,
which are beyond the scope of this document.

Running Wireshark on MacOS X requires X11; there are other pcap-compatible
native packet sni�ers for MacOS X.

6 NAT devices and firewalls create uncertainty because they routinely rewrite,
drop, or block tra�c; if they are not disabled, it will be di�cult to prove that
communications that blocked or altered packets were blocked or altered by an
ISP rather than by a firewall device. NATs and proxies also prevent direct
packet-by-packet comparison of packet traces because the end points do not
have a consistent view of the source and destination addresses in use, and there
may not even be a one-to-one relationship between packets entering and
exiting a NAT or proxy. Evidence of third-party packet tampering gathered in
the presence of any of these devices is better than no evidence, but must be
interpreted with extreme caution.

7 Note that if your IP address appears to be in a private address range defined
by RFC 1918 (10.0.0.0 - 10.255.255.255, 172.16.0.0 - 172.31.255.255, or
192.168.0.0 - 192.168.255.255), you have not properly followed the instructions
to disable any firewalls and NAT devices (or your ISP is forcing everyone to use
its own ISP-operated NAT service).

8 Windows users may also be able to use the NPF driver to perform a packet

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

22 of 23 2/12/23, 06:01



capture as an unprivileged user.

9 In this context, "packet number" refers to the ordinal number of the packet
within a particular capture file, which is displayed by Wireshark in the left-
hand column; the first packet sent or received is number 1, the next number 2,
and so on. There are also other forms of serial numbering contained within the
packets themselves, such as the IP identification field and TCP sequence
number. pcapdi� uses the IP identification field (which Wireshark refers to as
ip.id for display filter purposes) to refer to packets, but this paragraph is merely
discussing Wireshark packet ordinal numbers. "Packet no. 2340" in this sense
need not have IP identification value 2340.

10 This reordering is not necessarily only due to ISP packet reordering, but also
to the existence of network latency; if both computers transmit a packet at
noon over a network with a 1-second latency, each computer will receive the
other computer's transmissions at 12:00:01 and consider its own transmission
to have taken place "first".

11 To compound the suspiciousness of this situation, each machine believed that
it was not the first to send a RST packet in this transaction - the local and
remote machines each believed that the other party had initiated the process of
disconnecting the communication. It can be legitimate in the TCP protocol to
send a RST in response to a RST, and this trace suggests that each machine
believed that that is what it was doing - disconnecting only after the other end
had already disconnected.

12 We might compare this, albeit imprecisely, to the behavior of the post o�ce
in delivering a letter: the post o�ce may apply a postmark or print a bar code
on the outside of the envelope, stamp delivery-related notations on it, or even
correct an erroneous postal code. However, the post o�ce is not supposed to
alter the contents of letters.

Downloads

packet_injection.pdf
ELECTRONIC FRONTIER FOUNDATION

eff.org

Creative Commons Attribution License

Detecting packet injection: a guide to observing packet... https://www.eff.org/wp/detecting-packet-injection

23 of 23 2/12/23, 06:01

https://www.eff.org/files/packet_injection_0.pdf
https://www.eff.org/files/packet_injection_0.pdf

