
ENJOY THIS BLOG?

What if Your Project

Management Tool

Was Fast and

Intuitive? Try

Shortcut (formerly

Clubhouse).ADS VIA CARBON

My new book ASP.NET Core in

Action, Second Edition is

available now! It supports .NET

5.0, and is available as an eBook

or paperback. You even get a

free copy of the �rst edition of

ASP.NET Core in Action!

Andrew Lock | .NET Escapades
Home About Subscribe ☾ Dark

October 03, 2017 in ~ 6 min read.

Creating and trusting a self-signed
certi�cate on Linux for use in Kestrel and

ASP.NET Core
Share on:

These days, running your apps over HTTPS is pretty much required. so you need an SSL

certi�cate to encrypt the connection between your app and a user's browser.

I was recently trying to create a self-signed certi�cate for use in a Linux development

environment, to serve requests with ASP.NET Core over SSL when developing locally. Playing

with certs is always harder than I think it's going to be, so this post describes the process I took

to create and trust a self-signed cert.

Disclaimer I'm very much a Windows user at heart, so I can't give any guarantees as to whether

this process is correct. It's just what I found worked for me!

Using Open SSL to create a self-signed certi�cate

On Windows, creating a self-signed development certi�cate for development is often not

necessary - Visual Studio automatically creates a development certi�cate for use with IIS

Express, so if you run your apps this way, then you shouldn't have to deal with certi�cates

directly.

On the other hand, if you want to host Kestrel directly over HTTPS, then you'll need to work

with certi�cates directly one way or another. On Linux, you'll either need to create a cert for

Kestrel to use, or for a reverse-proxy like Nginx or HAProxy. After much googling, I took the

approach described in this post.

Creating a basic certi�cate using openssl

Creating a self-signed cert with the openssl library on Linux is theoretically pretty simple. My

�rst attempt was to use a script something like the following:

openssl req -new -x509 -newkey rsa:2048 -keyout localhost.key -out localhost.cer -days 365 -su
openssl pkcs12 -export -out localhost.pfx -inkey localhost.key -in localhost.cer

This creates 3 �les:

localhost.cer - The public key for the SSL certi�cate

Sponsored by MailBee.NET Objects—send, receive, process email and Outlook �le formats in .NET apps.

Now with TLS 1.3 support.

ASP.NET CORE ASP.NET CORE 2.0 SECURITY

Creating and trusting a self-signed certificate on Linux fo... https://andrewlock.net/creating-and-trusting-a-self-signe...

1 of 6 2/8/22, 14:22

The script creates a certi�cate with a "Common Name" for the localhost domain (the -subj

/CN=localhost part of the script). That means we can use it to secure connections to the

localhost domain when developing locally.

The problem with this certi�cate is that it only includes a common name so

. Instead, we need to create a certi�cate with a

 for the DNS record (i.e. localhost).

The easiest way I found to do this was to use a .conf �le containing all our settings, and to pass

it to openssl .

Creating a certi�cate with DNS SAN

The following �le shows the .conf con�g �le that speci�es the particulars of the certi�cate that

we're going to create. I've included all of the details that you must specify when creating a

certi�cate, such as the company, email address, location etc.

If you're creating your own self signed certificate, be sure to change these details, and to add any

extra DNS records you need.

[req]
prompt = no
default_bits = 2048
default_keyfile = localhost.pem
distinguished_name = subject
req_extensions = req_ext
x509_extensions = x509_ext
string_mask = utf8only

The Subject DN can be formed using X501 or RFC 4514 (see RFC 4519 for a description).
Its sort of a mashup. For example, RFC 4514 does not provide emailAddress.
[subject]
countryName = GB
stateOrProvinceName = London
localityName = London
organizationName = .NET Escapades

Use a friendly name here because its presented to the user. The server's DNS
names are placed in Subject Alternate Names. Plus, DNS names here is deprecated
by both IETF and CA/Browser Forums. If you place a DNS name here, then you
must include the DNS name in the SAN too (otherwise, Chrome and others that
strictly follow the CA/Browser Baseline Requirements will fail).
commonName = Localhost dev cert
emailAddress = test@test.com

Section x509_ext is used when generating a self-signed certificate. I.e., openssl req -x509
[x509_ext]

subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer

You only need digitalSignature below. *If* you don't allow
RSA Key transport (i.e., you use ephemeral cipher suites), then
omit keyEncipherment because that's key transport.
basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me confused
In either case, you probably only need serverAuth.
extendedKeyUsage = serverAuth, clientAuth

Section req_ext is used when generating a certificate signing request. I.e., openssl req ...
[req_ext]

subjectKeyIdentifier = hash

basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

the latest Chrome

versions will not trust it Subject Alternative

Name (SAN)

Creating and trusting a self-signed certificate on Linux fo... https://andrewlock.net/creating-and-trusting-a-self-signe...

2 of 6 2/8/22, 14:22

Creating and trusting a self-signed certificate on Linux fo... https://andrewlock.net/creating-and-trusting-a-self-signe...

3 of 6 2/8/22, 14:22

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me confused
In either case, you probably only need serverAuth.
extendedKeyUsage = serverAuth, clientAuth

[alternate_names]

DNS.1 = localhost

Add these if you need them. But usually you don't want them or
need them in production. You may need them for development.
DNS.5 = localhost
DNS.6 = localhost.localdomain
DNS.7 = 127.0.0.1

IPv6 localhost
DNS.8 = ::1

We save this con�g to a �le called localhost.conf , and use it to create the certi�cate using a

similar script as before. Just run this script in the same folder as the localhost.conf �le.

openssl req -config localhost.conf -new -x509 -sha256 -newkey rsa:2048 -nodes \
 -keyout localhost.key -days 3650 -out localhost.crt
openssl pkcs12 -export -out localhost.pfx -inkey localhost.key -in localhost.crt

This will ask you for an export password for your pfx �le. Be sure that you provide a password

and keep it safe - ASP.NET Core requires that you don't leave the password blank. You should

now have an X509 certi�cate called localhost.pfx that you can use to add HTTPS to your

app.

Creating and trusting a self-signed certificate on Linux fo... https://andrewlock.net/creating-and-trusting-a-self-signe...

4 of 6 2/8/22, 14:22

Before we use the certi�cate in our apps, we need to trust it on our local machine. Exactly how

you go about this you're using. On top of that, some

apps seem to use their own certi�cate stores, so trusting the cert globally won't necessarily

mean it's trusted in all of your apps.

The following example worked for me on Ubuntu 16.04, and kept Chrome happy, but I had to

explicitly add an exception to Firefox when I �rst used the cert.

#Install the cert utils
sudo apt install libnss3-tools
Trust the certificate for SSL
pk12util -d sql:$HOME/.pki/nssdb -i localhost.pfx
Trust a self-signed server certificate
certutil -d sql:$HOME/.pki/nssdb -A -t "P,," -n 'dev cert' -i localhost.crt

As I said before, I'm not a Linux guy, so I'm not entirely sure if you need to run both of the trust

commands, but I did just in case! If anyone knows a better approach I'm all ears :)

We've now created a self-signed certi�cate with a DNS SAN name for localhost , and we trust

it on the development machine. The last thing remaining is to use it in our app.

Con�guring Kestrel to use your self-signed certi�cate

For simplicity, I'm just going to show how to load the localhost.pfx certi�cate in your app from

the .pfx �le, and how con�gure Kestrel to use it to serve requests over HTTPS. I've hard-coded

the .pfx password in this example for simplicity, but you should load it from con�guration

instead.

Warning You should never include the password directly like this in a production app.

The following example is for ASP.NET Core 2.0 - of how to

add SSL in ASP.NET Core 1.X (as well as how to create a self-signed cert on Windows).

public class Program
{

public static void Main(string[] args)
{

BuildWebHost(args).Run();
}

public static IWebHost BuildWebHost(string[] args) =>
return WebHost.CreateDefaultBuilder()

.UseKestrel(options =>
{

// Configure the Url and ports to bind to
// This overrides calls to UseUrls and the ASPNETCORE_URLS environment variabl
// overridden if you call UseIisIntegration() and host behind IIS/IIS Express

 options.Listen(IPAddress.Loopback, 5001);
 options.Listen(IPAddress.Loopback, 5002, listenOptions =>

{
 listenOptions.UseHttps("localhost.pfx", "testpassword");

});
})
.UseStartup<Startup>()
.Build();

}

Although CreateDefaultBuilder() adds Kestrel to the app anyway, you can call UseKestrel()

again and specify additional options. Here we are de�ning two URLs and ports to listen on (The

IPAddress.Loopback address corresponds to localhost or 127.0.0.1):

 - An unsecured end point

 - Secured using our SSL cert

We add HTTPS to the second Listen() call with the UseHttps() extension method. There are

varies depending on which �avour of Linux

Shawn Wildermuth has an example

http://localhost:5001

https://localhost:5002

Creating and trusting a self-signed certificate on Linux fo... https://andrewlock.net/creating-and-trusting-a-self-signe...

5 of 6 2/8/22, 14:22

© 2022 Andrew Lock | .NET Escapades. All Rights Reserved. | Built with (Previously and). | Metalsmith Ghost Ca�eine Theme Image credits

If everything is con�gured correctly, you should be able to view the app in Chrome, and see a

nice, green, Secure padlock:

As I said at the start of this post, I'm not 100% on all of this, so if anyone has any suggestions or

improvements, please let me know in the comments.

Resources

FOLLOW ME

ENJOY THIS BLOG?

The Most Common OpenSSL Commands

Chrome deprecates subject CN matching

How to create a self-signed certi�cate with openssl?

PREVIOUS
Using anonymous types and tuples to attach correlation IDs to scope state with Serilog
and Seq in ASP.NET Core

NEXT
Debugging JWT validation problems between an OWIN app and IdentityServer4

Loading comments powered by Disqus, please wait…

Creating and trusting a self-signed certificate on Linux fo... https://andrewlock.net/creating-and-trusting-a-self-signe...

6 of 6 2/8/22, 14:22

